4.某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷量P(件)與單價(jià)x(元)之間的關(guān)系如圖折線所示,該網(wǎng)店與這種商品有關(guān)的周開(kāi)支均為25元.
(I)根據(jù)周銷量圖寫出周銷量P(件)與單價(jià)x(元)之間的函數(shù)關(guān)系式;
(Ⅱ)寫出周利潤(rùn)y(元)與單價(jià)x(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).

分析 (I)根據(jù)函數(shù)圖象,求出解析式,即可寫出周銷量P(件)與單價(jià)x(元)之間的函數(shù)關(guān)系式;
(Ⅱ)分段求出最值,即可得出結(jié)論.

解答 解:(I)當(dāng)x∈[12,20]時(shí),P=k1x+b1,代入點(diǎn)(12,26),(20,10)得k1=-2,b1=50,∴P=-2x+50;
同理x∈(20,28]時(shí),P=-x+30,
∴周銷量P(件)與單價(jià)x(元)之間的函數(shù)關(guān)系式P=$\left\{\begin{array}{l}{-2x+50,12≤x≤20}\\{-x+30,20<x≤28}\end{array}\right.$;
(Ⅱ)y=P(x-10)-25=$\left\{\begin{array}{l}{(-2x+50)(x-10)-25,12≤x≤20}\\{(-x+30)(x-10),20<x≤28}\end{array}\right.$,
當(dāng)x∈[12,20]時(shí),y=$-2(x-\frac{35}{2})^{2}+\frac{175}{2}$,x=$\frac{35}{2}$時(shí),ymax=$\frac{175}{2}$;
x∈(20,28]時(shí),y=-(x-20)2+75,函數(shù)單調(diào)遞減,∴y<75,
綜上所述,x=$\frac{35}{2}$時(shí),ymax=$\frac{175}{2}$.

點(diǎn)評(píng) 本題考查分段函數(shù)及運(yùn)用,考查分段函數(shù)的最值,應(yīng)考慮各段的最值,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線y=4x2,過(guò)點(diǎn)P(0,2)作直線l,交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),
(Ⅰ)求證:$\overrightarrow{OA}•\overrightarrow{OB}$為定值;
(Ⅱ)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.拋物線y=-$\frac{1}{8}{x}^{2}$的準(zhǔn)線方程是(  )
A.x=$\frac{1}{32}$B.x=$\frac{1}{2}$C.y=2D.y=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,則tan2β等于(  )
A.$\frac{1}{7}$B.$\frac{4}{3}$C.-$\frac{1}{7}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)在(-∞,+∞)上有意義,對(duì)于給定的正數(shù)k,定義函數(shù)fk(x)=$\left\{\begin{array}{l}f(x),f(x)<k\\ k,f(x)≥k\end{array}\right.$,取k=3,f(x)=($\frac{k}{2}$)|x|,則fk(x)=$\frac{k}{2}$的零點(diǎn)有( 。
A.0個(gè)B.1個(gè)
C.2個(gè)D.不確定,隨k的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)在(-∞,+∞)上有意義,對(duì)于對(duì)定的正數(shù)k,定義函數(shù)fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=$\frac{1}{2}$,f(x)=($\frac{1}{2}$)|x|,則fk(x)=$\frac{k}{2}$的零點(diǎn)有(  )
A.0個(gè)B.1個(gè)
C.2個(gè)D.不確定,隨k的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2sin(2ωx+$\frac{π}{3}$)(ω>0),最小正周期為π
(1)求ω的值;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再將所得圖象各點(diǎn)的橫坐標(biāo)縮小為原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)x,y∈R,下列不等式成立的是(  )
A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點(diǎn),底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.
(1)求證:BE∥平面PAD;
(2)求證:平面PBC⊥平面PBD;
(3)設(shè)Q為棱PC上一點(diǎn),$\overrightarrow{CQ}$=λ$\overrightarrow{CP}$,試確定λ的值使得二面角Q-BD-P為60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案