數(shù)列{an}是以a為首項(xiàng),q為公比的等比數(shù)列.令bn=1-a1-a2-…-an,cn=2-b1-b2-…-bn,n∈N*.
(1)試用a、q表示bn和cn;
(2)若a<0,q>0且q≠1,試比較cn與cn+1的大;
(3)是否存在實(shí)數(shù)對(duì)(a,q),其中q≠1,使{cn}成等比數(shù)列.若存在,求出實(shí)數(shù)對(duì)(a,q)和{cn};若不存在,請(qǐng)說(shuō)明理由.
分析:(1)分兩種情況考慮,當(dāng)q=1時(shí),得到數(shù)列{an}每一項(xiàng)都為a,代入bn=1-a1-a2-…-an中,得到bn,列舉出bn的各項(xiàng),代入cn=2-b1-b2-…-bn中,利用等差數(shù)列的前n項(xiàng)和公式化簡(jiǎn)后,得到cn;當(dāng)q不等于1時(shí),利用等比數(shù)列的前n項(xiàng)和公式表示出數(shù)列{an}的前n項(xiàng)和,代入bn=1-a1-a2-…-an中,得到bn,列舉出bn的各項(xiàng),代入cn=2-b1-b2-…-bn中,利用等比數(shù)列的前n項(xiàng)和公式化簡(jiǎn)后,得到cn,綜上,分別寫(xiě)出bn和cn的通項(xiàng)即可;
(2)根據(jù)q不等于1,由(1)求出的通項(xiàng)找出cn與cn+1,利用做差法比較大小,方法是表示出cn+1-cn,化簡(jiǎn)后根據(jù)已知的條件,判斷其差的正負(fù),即可得到cn與cn+1的大小關(guān)系;
(3)存在.根據(jù)q不等于1和0,由(1)找出數(shù)列{cn}的通項(xiàng),因?yàn)閧cn}成等比數(shù)列,所以得到此數(shù)列為常數(shù)列或常數(shù)項(xiàng)和n項(xiàng)的系數(shù)為0,列出關(guān)于a與q的方程,求出方程的解即可得到a與q的值,經(jīng)過(guò)檢驗(yàn)得到滿(mǎn)足題意的a與q的值.
解答:解:(1)當(dāng)q=1時(shí),b
n=1-(a
1+a
2+…+a
n)=1-na,
cn=2-(b1+b2+…+bn)=2-=n2+(-1)n+2,
當(dāng)q≠1時(shí),
bn=1-(a1+a2+…+an)=1-cn=2-(b1+b2+…+bn)=2-(1-)n-(q+q2+…+qn)=
2-(1-)n-(1-qn)=
2--(1-)n+qn所以
bn=,
c
n=
| n2+(-1)n+2 q=1 | 2--(1-)n+qn q≠1 |
| |
;(4分)
(2)因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
cn=2-
-(1-
)n+
qn,
所以
cn+1=2--(1-)(n+1)+qn+1cn+1-cn=-(1-)+(qn+1-qn)=-1+(1-qn+1)當(dāng)q>1時(shí),1-q<0,1-q
n+1<0;
當(dāng)0<q<1時(shí),1-q>0,1-q
n+1>0,
所以當(dāng)a<0,q>0且q≠1時(shí),c
n+1-c
n<0,即c
n+1<c
n;(5分)
(3)因?yàn)閝≠1,q≠0,
所以
cn=2--(1-)n+qn,
因?yàn)閧c
n}為等比數(shù)列,則
或
,
所以
或
(舍去),所以
.(5分)
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差、等比數(shù)列的前n項(xiàng)和公式化簡(jiǎn)求值,掌握等比數(shù)列的性質(zhì),會(huì)利用做差法比較兩式子的大小,是一道中檔題.學(xué)生在利用等比數(shù)列的前n項(xiàng)和公式時(shí)注意公比q不為1.