已知雙曲線C的中心為原點(diǎn),點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),過點(diǎn)F作漸近線的垂線l,垂足為M,直線l交y軸于點(diǎn)E,若,則C的方程為   
【答案】分析:先根據(jù)條件求出EF的方程,得到E.F的坐標(biāo),再根據(jù),求出M的坐標(biāo),結(jié)合點(diǎn)M在漸近線上得到a,b之間的關(guān)系,再由點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),可求出答案.
解答:解:設(shè)雙曲線C的為,a>0,b>0.
漸近線方程是y=±x
右焦點(diǎn)的坐標(biāo)是(,0)
現(xiàn)在假設(shè)由右焦點(diǎn)向一、三象限的漸近線引垂線
所以取方程y=x
∵EF垂直于漸近線,
∴直線EF的斜率是-
該直線的方程是y=-(x-
當(dāng)x=0時(shí),y=,
∴E點(diǎn)的坐標(biāo)(0,
,
∴M的坐標(biāo)(,
∵點(diǎn)M在漸近線上,∴,
整理得:b2=a2,
∵c=,∴b2=a2=1.
∴雙曲線方程為x2-y2=1.
故答案為:x2-y2=1.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生轉(zhuǎn)化和化歸的數(shù)學(xué)思想的運(yùn)用,以及基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知雙曲線C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)F1、F2在x軸上,點(diǎn)P在雙曲線的左支上,點(diǎn)M在右準(zhǔn)線上,且滿足
F1O
=
PM
,|
OF1
|=|
OM
|

(Ⅰ)求雙曲線C的離心率e;
(Ⅱ)若雙曲線C過點(diǎn)Q(2,
3
),B1、B2是雙曲線虛軸的上、下端點(diǎn),點(diǎn)A、B是雙曲線上不同的兩點(diǎn),且
B2A
B2B
B2A
B1B
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的中心為原點(diǎn),點(diǎn)F(
2
,0)
是雙曲線C的一個(gè)焦點(diǎn),過點(diǎn)F作漸近線的垂線l,垂足為M,直線l交y軸于點(diǎn)E,若
FM
=
ME
,則C的方程為
x2-y2=1
x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年崇文區(qū)一模理)(13分)  已知雙曲線C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)F1、F­2x軸上,點(diǎn)P在雙曲線的左支上,點(diǎn)

M在右準(zhǔn)線上,且滿足

       (Ⅰ)求雙曲線C的離心率e

       (Ⅱ)若雙曲線C過點(diǎn)Q(2,),B1、B2是雙曲線虛軸的上、下端點(diǎn),點(diǎn)A、B是雙曲線上不同的兩點(diǎn),且,求直線AB的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年北京市崇文區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知雙曲線C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)F1、F2在x軸上,點(diǎn)P在雙曲線的左支上,點(diǎn)M在右準(zhǔn)線上,且滿足
(Ⅰ)求雙曲線C的離心率e;
(Ⅱ)若雙曲線C過點(diǎn)Q(2,),B1、B2是雙曲線虛軸的上、下端點(diǎn),點(diǎn)A、B是雙曲線上不同的兩點(diǎn),且,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案