9.若關于x的不等式1+$\frac{k}{x-1}$≤0的解集是[-2,1),則k=3.

分析 問題轉化為x=-2是方程1+$\frac{k}{x-1}$=0的根,解出即可.

解答 解:由題意得:x=-2是方程1+$\frac{k}{x-1}$=0的根,
∴1-$\frac{k}{3}$=0,解得:k=3,
故答案為:3.

點評 本題考查了解不等式問題,考查轉化思想,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.執(zhí)行如圖所示的程序框圖,則輸出的T值等于30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知直線l1:(m+3)x+(m-1)y-5=0與l2:(m-1)x+(3m+9)y-1=互相垂直,則實數(shù)m的值為1或-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.等比數(shù)列{an}前n項和為Sn滿足$\underset{lim}{n→∞}$Sn=$\frac{1}{{a}_{1}}$,求a1的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.從1,2,3,4中任取2個不同的數(shù),則取出的2個數(shù)都是偶數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.甲、乙、丙三人要在一排9個空座上就坐,若要求甲、乙、丙三人每人的兩旁都空座,則不同的坐法共有60種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知cosA=$\frac{4}{5}$,b=5c.
(1)求sinC;
(2)若△ABC的面積S=$\frac{3}{2}$sinBsinC,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,若$\widehat{ACB}$是半徑為r的圓的弓形,弦AB長為$\sqrt{2}$r,C為劣弧AB上的一點,CD⊥AB于D,當點C在什么位置時,△ACD的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知tanA+$\frac{1}{tanA}$=m(A≠kπ,A$≠kπ+\frac{π}{2}$,k∈Z),則sin2A等于(  )
A.$\frac{1}{{m}^{2}}$B.$\frac{1}{m}$C.2mD.$\frac{2}{m}$

查看答案和解析>>

同步練習冊答案