8.已知曲線C1:y2=tx (y>0,t>0)在點M($\frac{4}{t}$,2)處的切線與曲線C2:y=ex+l-1也相切,則t的值為( 。
A.4e2B.4eC.$\frac{e^x}{4}$D.$\frac{e}{4}$

分析 求出y=$\sqrt{tx}$的導數(shù),求出斜率,由點斜式方程可得切線的方程,設切點為(m,n),求出y=ex+1-1的導數(shù),可得切線的斜率,得到t的方程,解方程可得.

解答 解:曲線C1:y2=tx(y>0,t>0),即有y=$\sqrt{tx}$,
y′=$\sqrt{t}$•$\frac{1}{2\sqrt{x}}$,
在點M($\frac{4}{t}$,2)處的切線斜率為$\sqrt{t}$•$\frac{1}{2\sqrt{\frac{4}{t}}}$=$\frac{t}{4}$,
可得切線方程為y-2=$\frac{t}{4}$(x-$\frac{4}{t}$),即y=$\frac{t}{4}$x+1,
設切點為(m,n),則曲線C2:y=ex+1-1,
y′=ex+1,em+1=$\frac{t}{4}$,
∴m=ln$\frac{t}{4}$-1,n=m•$\frac{t}{4}$-1,n=em+1-1,
可得(ln$\frac{t}{4}$-1)•$\frac{t}{4}$-1=e${\;}^{ln\frac{t}{4}}$-1,
即有(ln$\frac{t}{4}$-1)•$\frac{t}{4}$=$\frac{t}{4}$,可得$\frac{t}{4}$=e2
即有t=4e2
故選:A.

點評 本題考查導數(shù)的運用:求切線的方程,考查導數(shù)的幾何意義,正確求導和運用點斜式方程是解題的關鍵,注意轉化思想的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,則x-2y的最大值為( 。
A.-9B.-3C.-1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.(文)已知是虛數(shù)單位,則$\frac{3+i}{1-i}$=( 。
A.1+2iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.橢圓$\frac{x^2}{36}+\frac{y^2}{20}=1$的左頂點為A,右焦點為F,點P在橢圓上,且位于第一象限,當△PAF是直角三角形時,S△PAF=( 。
A.$\frac{{25\sqrt{3}}}{4}$或$\frac{20}{3}$B.$\frac{25\sqrt{3}}{2}$或$\frac{50}{3}$C.$\frac{25\sqrt{3}}{4}$或$\frac{10}{3}$D.$\frac{25\sqrt{3}}{2}$或$\frac{20}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{5}-\frac{y^2}{4}=1$的離心率為(  )
A.4B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在等比數(shù)列{an}中,已知a4=8a1,且a1,a2+1,a3成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{|an-4|}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若ab=-2,則a2+b2-1的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知拋物線y=ax2(a>0)的焦點到準線的距離為2,則a=( 。
A.4B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試建立y關于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關關系預測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月份的數(shù)據(jù)作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學期望.
參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}$=25,$\sum_{i=1}^{5}{y}_{i}$=5.36,$\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=0.64
回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

同步練習冊答案