(2009江蘇卷)(本小題滿(mǎn)分16分)

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣(mài)出該產(chǎn)品的單價(jià)為元,則他的滿(mǎn)意度為;如果他買(mǎi)進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿(mǎn)意度為.如果一個(gè)人對(duì)兩種交易(賣(mài)出或買(mǎi)進(jìn))的滿(mǎn)意度分別為,則他對(duì)這兩種交易的綜合滿(mǎn)意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買(mǎi)進(jìn)A與賣(mài)出B的綜合滿(mǎn)意度為,乙賣(mài)出A與買(mǎi)進(jìn)B的綜合滿(mǎn)意度為

(1)求關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=;

(2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿(mǎn)意度均最大?最大的綜合滿(mǎn)意度為多少?

(3)記(2)中最大的綜合滿(mǎn)意度為,試問(wèn)能否適當(dāng)選取、的值,使得同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由。

解析:本小題主要考查函數(shù)的概念、基本不等式等基礎(chǔ)知識(shí),考查數(shù)學(xué)建模能力、抽象概括能力以及數(shù)學(xué)閱讀能力。滿(mǎn)分16分。

(1)

當(dāng)時(shí),,

,     =

(2)當(dāng)時(shí),

故當(dāng)時(shí),

甲乙兩人同時(shí)取到最大的綜合滿(mǎn)意度為。

(3)(方法一)由(2)知:=

得:

,即:。

同理,由得:

另一方面,

當(dāng)且僅當(dāng),即=時(shí),取等號(hào)。

所以不能否適當(dāng)選取、的值,使得同時(shí)成立,但等號(hào)不同時(shí)成立。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷)已知向量和向量的夾角為,,則向量和向量的數(shù)量積=  。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷)函數(shù)的單調(diào)減區(qū)間為       .     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷)函數(shù)為常數(shù),)在閉區(qū)間上的圖象如圖所示,則=       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷)現(xiàn)有5根竹竿,它們的長(zhǎng)度(單位:m)分別為2.5,2.6,2.7,2.8,2.9,若從中一次隨機(jī)抽取2根竹竿,則它們的長(zhǎng)度恰好相差0.3m的概率為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009江蘇卷)某校甲、乙兩個(gè)班級(jí)各有5名編號(hào)為1,2,3,4,5的學(xué)生進(jìn)行投籃練習(xí),每人投10次,投中的次數(shù)如下表:

學(xué)生

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

甲班

6

7

7

8

7

乙班

6

7

6

7

9

則以上兩組數(shù)據(jù)的方差中較小的一個(gè)為=       .

查看答案和解析>>

同步練習(xí)冊(cè)答案