【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ),

設(shè) ,則.

,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵

∴當時, ,當時, ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當時, ,∴上單調(diào)遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時, ;

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設(shè)點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標方程為.

(Ⅱ)由直線的方程可得點,點.

設(shè)點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在極坐標系和直角坐標系中,極點與直角坐標系的原點重合,極軸與軸的正半軸重合,直線為參數(shù)),圓.

(Ⅰ)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

(Ⅱ)已知是直線上一點,是圓上一點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在國內(nèi)汽車市場中,國產(chǎn)SUV出現(xiàn)了持續(xù)不退的銷售熱潮,2018年國產(chǎn)SUV銷量排行榜完整版已經(jīng)出爐,某品牌車型以驚人的銷量成績擊退了所有虎視眈眈的對手,再次霸氣登頂,下面是該品牌國產(chǎn)SUV分別在2017年與2018711月份的銷售量對比表

時間

7

8

9

10

11

2017年(單位:萬輛)

2.8

3.9

3.5

4.4

5.4

2018年(單位:萬輛)

3.8

3.9

4.5

4.9

5.4

(Ⅰ)若從7月至11月中任選兩個月份,求至少有一個月份這兩年該國產(chǎn)品牌SUV銷量相同的概率。

(Ⅱ)分別求這兩年7月至11月的銷售數(shù)據(jù)的平均數(shù),并直接判斷哪年的銷售量比較穩(wěn)定。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當于給出了已知球的體積V,求其直徑d的一個近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個是(
A.d≈
B.d≈
C.d≈
D.d≈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),

(1)當BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當三棱錐A﹣BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(I)已知函數(shù)f(x)=rx﹣xr+(1﹣r)(x>0),其中r為有理數(shù),且0<r<1.
(1)求f(x)的最小值;
(2)試用(1)的結(jié)果證明如下命題:設(shè)a1≥0,a2≥0,b1 , b2為正有理數(shù),若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(3)請將(2)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.注:當α為正有理數(shù)時,有求導(dǎo)公式(xαr=αxα1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的解析式滿足

1)求函數(shù)的解析式;

2)若在區(qū)間(1,+∞)單調(diào)遞增,求的取值范圍(只需寫出范圍,不用說明理由)。

3)當時,記函數(shù),求函數(shù)gx)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax∈Z),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.

(1)求f(x)的解析式;

(2)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;

(3)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍成的三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在區(qū)間上的最小值記為

1)當時,求函數(shù)在區(qū)間上的值域;

2)求的函數(shù)表達式;

3)求的最大值.

查看答案和解析>>

同步練習(xí)冊答案