18.“k=1”是“直線y=x+k與圓x2+y2=1相交”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 由k=1時直線與圓相交,判斷充分性成立;由直線與圓相交時求出k的取值范圍,判斷必要性不成立;可得結(jié)論.

解答 解:k=1時,直線為x-y+1=0,圓x2+y2=1的圓心O到直線的距離為d=$\frac{1}{\sqrt{2}}$<1,
直線與圓相交,充分性成立;
直線y=x+k與圓x2+y2=1相交時,圓心到直線的距離d=$\frac{|k|}{\sqrt{2}}$<1,
解得k∈(-$\sqrt{2}$,$\sqrt{2}$),必要性不成立;
所以“k=1”是“直線y=x+k與圓x2+y2=1相交”的充分不必要條件.
故選:A.

點評 本題考查了直線與圓的位置關(guān)系以及充分與必要條件的判斷問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,則異面直線BC1與AC所成角的余弦值為(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}滿足:a1=$\frac{3}{8}$,an+2-an≤3n,an+6-an≥91•3n,則a2015=( 。
A.$\frac{{3}^{2015}}{2}$+$\frac{3}{2}$B.$\frac{{3}^{2015}}{8}$C.$\frac{{3}^{2015}}{8}$+$\frac{3}{2}$D.$\frac{{3}^{2015}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明:CD⊥AE;
(2)證明:AE⊥平面PDC;
(3)(限理科生做,文科生不做)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線y2=-6x的焦點為F,點M,N在拋物線上,且滿足$\overrightarrow{FM}=k\overrightarrow{FN}(k≠0)$,則|MN|的最小值6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱AB上的動點.
(Ⅰ)求證:DA1⊥ED1;
(Ⅱ)若E為AB中點時,求二面角D1-EC-D的余弦值;
(Ⅲ)寫出點E到直線D1C距離的最大值及此時點E的位置(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x3-x+2在下列區(qū)間內(nèi)一定存在零點的是( 。
A.(1,2)B.(0,1)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,離心率為$\frac{\sqrt{2}}{2}$,過點F且與x軸垂直的直線被橢圓截得的線段長為$\sqrt{2}$
(Ⅰ)求橢圓的方程;
(Ⅱ)過點P(0,2)的直線l與橢圓交于不同的兩點A,B,當(dāng)△OAB面積最大值時,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$與橢圓$\frac{x^2}{a^2}+\frac{y^2}{16}=1$有共同的焦點,且a>0,則a的值為( 。
A.5B.$\sqrt{7}$C.$\sqrt{15}$D.$\sqrt{17}$

查看答案和解析>>

同步練習(xí)冊答案