(2013•昌平區(qū)一模)已知函數(shù)f(x)=-x3+ax2-4(a∈R).
(Ⅰ)若函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為
π4
,求f(x)在[-1,1]上的最小值;
(Ⅱ)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.
分析:(I)先求出函數(shù)f(x)的導(dǎo)函數(shù),然后根據(jù)函數(shù)f(x)在點(diǎn)(1,f(1))處的切線的斜率等于1,建立關(guān)于a的方程,解出a,再求出f′(x)=0,再討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,得到函數(shù)的單調(diào)性,進(jìn)而來(lái)確定極值點(diǎn),通過(guò)比較極值與端點(diǎn)的大小從而確定出最值.
(II)存在x0∈(0,+∞),使f(x0)>0,即f(x)在(0,+∞)上的最大值大于0,故先求導(dǎo),然后分a>0和a≤0兩種情況分別討論f(x)在(0,+∞)上的最大值情況即可.
解答:解:(I)∵f'(x)=-3x2+2ax(1分),
由已知f′(x)=tan
π
4
=1,即-3+2a=1(2分),
∴a=2(3分); …(3分)
此時(shí),知f(x)=-x3+2x2-4(4分),
f′(x)=-3x2+4x=-3x(x-
4
3
)(5分),
x∈[-1,1]時(shí),如下表:
….(6分)
∴x∈[-1,1]時(shí),f(x)最小值為f(0)=-4,…(7分)
(II)∵f′(x)=-3x(x-
2a
3
),
(1)若a≤0,
當(dāng)x>0時(shí),f′(x)<0,從而f(x)在(0,+∞)上是減函數(shù),
又f(0)=-4,則當(dāng)x>0時(shí),f(x)<-4.
∴當(dāng)a≤0時(shí),不存在x0>0使f(x0)>0(11分);
(2)若a>0時(shí),
當(dāng)0<x<
2a
3
時(shí),f′(x)>0.當(dāng)x>
2a
3
時(shí),f′(x)<0,
∴f(x)在(0,
2a
3
]上單增,在[
2a
3
,+∞)單減;
∴x∈(0,+∞)時(shí),f(x)max=f(
2a
3
)=
4a3
27
-4(12分),
由已知,必須
4a3
27
-4>0
∴a3>27,a>3 …(13分)
綜上,a的取值范圍是(3,+∞).
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的運(yùn)算,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)求函數(shù)的最值等知識(shí)點(diǎn),涉及了分類討論的數(shù)學(xué)思想,綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)一模)復(fù)數(shù)
2i
1-i
的虛部是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)一模)已知函數(shù)f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(Ⅱ)若對(duì)任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)一模)設(shè)定義域?yàn)镽的函數(shù)f(x)滿足以下條件;則以下不等式一定成立的是(  )
(1)對(duì)任意x∈R,f(x)+f(-x)=0;
(2)對(duì)任意x1,x2∈[1,a],當(dāng)x2>x1時(shí),有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)一模)為了解甲、乙兩廠的產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取各10件,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克).下表是測(cè)量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量滿足≥18毫克時(shí),該產(chǎn)品為優(yōu)等品.
(Ⅰ)試用上述樣本數(shù)據(jù)估計(jì)甲、乙兩廠生產(chǎn)的優(yōu)等品率;
(Ⅱ)從乙廠抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ);
(Ⅲ)從上述樣品中,各隨機(jī)抽取3件,逐一選取,取后有放回,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)一模)已知橢圓M的對(duì)稱軸為坐標(biāo)軸,離心率為
2
2
,且拋物線y2=4
2
x
的焦點(diǎn)是橢圓M的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l與橢圓M相交于A、B兩點(diǎn),以線段OA,OB為鄰邊作平行四邊形OAPB,其中點(diǎn)P在橢圓M上,O為坐標(biāo)原點(diǎn).求點(diǎn)O到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案