精英家教網 > 高中數學 > 題目詳情

過點M(0,1)作直線l,使其夾在直線l1:x-3y+10=0與l2:2x+y-8=0之間的線段被M平分,求直線l的方程.

答案:
解析:

解:設直線l與直線l1、l2分別交于點P1(x1,y1)、P2,則x1-3y1+10=0.又因為M(0,1)是線段P1P2的中點,由中點坐標公式得P2(-x1,2-y1).由點P2在直線l2上,可得2(-x1)+(2-y1)-8=0,即2x1+y1+6=0.由所以點P1的坐標為(-4,2).根據兩點式可得,直線l的方程為,即x+4y-4=0.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:數學公式+數學公式=1,(a>b>0)與雙曲4x2-數學公式y2=1有相同的焦點,且橢C的離心e=數學公式,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:2012年安徽省淮北市高考數學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:2012年安徽省淮南市高考數學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:2012年安徽省淮北市高考數學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案