分析 (1)求出兩圓的圓心坐標(biāo)和半徑,計(jì)算出圓心距并比較其與|r1-r2|、r1+r2的大小關(guān)系,可得兩圓的位置關(guān)系.(2)設(shè)出切線方程,利用圓心到直線的距離等于半徑,可求解直線l的方程.
解答 解:(1)相交,
因?yàn)椋簣AC1:(x+2)2+(y-2)2=4
∴圓心C1(-2,2),半徑r1=2,圓C2:(x+1)2+(y-4)2=4的圓心C2(-1,4),半徑r2=2,
∵|r1-r2|=0,r1+r2=4,圓心距C1C2=$\sqrt{({-1+2)}^{2}+(4-2)^{2}}$=$\sqrt{5}$,
∴|r1-r2|≤C1C2≤r1+r2,得兩圓的位置關(guān)系是相交;
(2)直線l與圓C1,C2都相切,設(shè)切線方程為:y=kx+b,
可得:$\left\{\begin{array}{l}{\frac{|-2k-2+b|}{\sqrt{1+{k}^{2}}}=2}\\{\frac{|-k-4+b|}{\sqrt{1+{k}^{2}}}=2}\end{array}\right.$,
解得:k=2,b=6$±2\sqrt{5}$,
所求切線方程為:y=2x+6$±2\sqrt{5}$.
點(diǎn)評(píng) 本題給出兩圓的一般式方程,求兩圓的位置關(guān)系并求它們的公切線方程,著重考查了圓的標(biāo)準(zhǔn)方程和一般方程、直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+1>0 | B. | ?x0∈R,x${\;}_{0}^{2}$+1≤0 | ||
C. | ?x0∈R,x${\;}_{0}^{2}$+1<0 | D. | ?x0∈R,x${\;}_{0}^{2}$+1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
每件A產(chǎn)品 | 每件B產(chǎn)品 | |
研制成本,搭載實(shí)驗(yàn)費(fèi)用之和(萬元) | 20 | 30 |
產(chǎn)品重量(千克) | 10 | 5 |
預(yù)計(jì)收益(萬元) | 80 | 60 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com