若f(x)=x2+bx+c,且f(1)=0,f(3)=0,則f(-1)=   
【答案】分析:利用已知的兩個函數(shù)值列出關(guān)于b,c的方程組求出b,c是解決本題的關(guān)鍵.求出該二次函數(shù)的表達式之后,讓自變量x取-1求出所求的函數(shù)值.
解答:解:依題意有
解得,
∴f(x)=x2-4x+3,
∴f(-1)=(-1)2-4×(-1)+3=8.
故答案為8.
點評:本題考查函數(shù)解析式求解的待定系數(shù)法,考查方程求未知數(shù)的思想,考查學生求函數(shù)值的思想和運算能力.屬于基本題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

4、若f(x)=x2-2x-4lnx則f(x)>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若 f(x)=-x2+2ax 與g(x)=
a
x+1
 在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍是( 。
A、(-1,0)∪(0,1)
B、(-1,0)∪(0,1]
C、(0,1]
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求f(log2x)的最小值及相應 x的值;
(2)若f(log2x)>f(1)且log2f(x)<f(1),求由x的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x2-4x-5.
(1)若f(x)>-8,求x的取值范圍;   (2)若f(a)=f(b),且a≠b,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(x2+6x,5x),
b
=(
x
3
,1-x),x∈[0,9]
,若f(x)=
a
b

(1)求f(x) 的單調(diào)區(qū)間
(2)求f(x)的最大值和最小值.

查看答案和解析>>

同步練習冊答案