【題目】已知橢圓:的左右焦點(diǎn)分別為,,,為橢圓上的兩動(dòng)點(diǎn),且以,,,四個(gè)點(diǎn)為頂點(diǎn)的凸四邊形的面積的最大值為.
(1)求橢圓的離心率;
(2)若橢圓經(jīng)過(guò)點(diǎn),且直線的斜率是直線,的斜率的等比中項(xiàng),求面積的取值范圍.
【答案】(1)(2)
【解析】
(1)由題得,化簡(jiǎn)即得橢圓的離心率;(2)設(shè)直線的方程為,
聯(lián)立直線和橢圓方程得到韋達(dá)定理,由,得且.再求出,即得面積的取值范圍.
(1)由題,當(dāng)位于橢圓的短軸端點(diǎn)時(shí),凸四邊形的面積最大為,
所以,.
(2)由(1)可設(shè)橢圓的方程為,將點(diǎn)代入得橢圓.
由題意可知,直線的斜率存在且不為,故可設(shè)直線的方程為,
,滿足,消去得.
,
且,,.
因?yàn)橹本,,的斜率依次成等比數(shù)列,所以,
即,又,所以,即.
由于直線,的斜率存在,且,得且.
設(shè)為點(diǎn)到直線的距離,
則
,
設(shè),
所以的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.
(1) 求證:;
(2) 若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,,.M為CD的中點(diǎn).
(1)若點(diǎn)E為PC的中點(diǎn),求證:BE∥平面PAD;
(2)當(dāng)平面PBD⊥平面ABCD時(shí),求點(diǎn)A到平面CEM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在軸上的拋物線過(guò)點(diǎn),橢圓的兩個(gè)焦點(diǎn)分別為,,其中與的焦點(diǎn)重合,過(guò)點(diǎn)與的長(zhǎng)軸垂直的直線交于,兩點(diǎn),且,曲線是以坐標(biāo)原點(diǎn)為圓心,以為半徑的圓.
(1)求與的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線與相切,且與交于,兩點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,則f(0)+f(1)+f(2)+f(3)+…+f(2019)=( 。
A. 0B. 505C. 1010D. 2020
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),伴隨著我國(guó)經(jīng)濟(jì)持續(xù)增長(zhǎng),戶均家庭教育投入戶均家庭教育投入是指一個(gè)家庭對(duì)家庭成員教育投入的總和也在不斷提高我國(guó)某地區(qū)2012年至2018年戶均家庭教育投入單位:千元的數(shù)據(jù)如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
戶均家庭教育投入y |
求y關(guān)于t的線性回歸方程;
利用中的回歸方程,分析2012年至2018年該地區(qū)戶均家庭教育投入的變化情況,并預(yù)測(cè)2019年該地區(qū)戶均家庭教育投入是多少.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑.
(1)若圓柱的體積為,,,求異面直線與所成的角(用反三角函數(shù)值表示結(jié)果);
(2)若圓柱的軸截面是邊長(zhǎng)為2的正方形,四面體的外接球?yàn)榍?/span>,求兩點(diǎn)在球上的球面距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com