【題目】設(shè)橢圓的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交兩點(diǎn),是坐標(biāo)原點(diǎn),分別過點(diǎn)作,的平行線,兩平行線的交點(diǎn)剛好在橢圓上,判斷是否為定值?若為定值,求出該定值;若不是,請說明理由.
【答案】(1);(2)是,6.
【解析】
(1)設(shè)橢圓的半焦距為,運(yùn)用橢圓的離心率公式,結(jié)合點(diǎn)在橢圓上,以及,求出,,,寫出橢圓方程即可;
(2)通過化簡得,將問題轉(zhuǎn)化為求證是定值,然后分直線的斜率不存在與不存在兩種情況進(jìn)行討論:①斜率不存在時,利用橢圓的對稱性求出,坐標(biāo),計(jì)算;②斜率存在時,設(shè)直線的方程為,聯(lián)立橢圓方程消去,利用韋達(dá)定理表示出與,求出點(diǎn)坐標(biāo),代入橢圓方程化簡得,計(jì)算與點(diǎn)到直線的距離,即可得到,綜合兩種情況即可得到結(jié)論.
(1)設(shè)橢圓的半焦距為,
橢圓的離心率為,
.①
又橢圓經(jīng)過點(diǎn),
.②
結(jié)合,③
由①②③,解得.
故橢圓的標(biāo)準(zhǔn)方程是.
(2)
.
①當(dāng)直線的斜率不存在時,不妨設(shè),,
根據(jù)對稱性知兩平行線的交點(diǎn)在軸上,
又交點(diǎn)剛好在橢圓上,
交點(diǎn)為長軸端點(diǎn),則滿足條件的直線的方程是.
此時點(diǎn),或,,
,
故;
②當(dāng)直線的斜率存在時,
設(shè)直線的方程為,,.
聯(lián)立方程,
消去得,
則,,,
,
不妨設(shè)兩平行線的交點(diǎn)為點(diǎn),則,
故點(diǎn)的坐標(biāo)為,
點(diǎn)剛好在橢圓上,
,
即
此時,
則
,
設(shè)點(diǎn)到直線的距離為,則.
.
故.
綜上,為定值6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中N,≥2,且R.
(1)當(dāng),時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,令,若函數(shù)有兩個極值點(diǎn),,且,求的取值范圍;
(3)當(dāng)時,試求函數(shù)的零點(diǎn)個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),點(diǎn)在圓:上.
(1)求實(shí)數(shù)的值;
(2)求過圓心且與直線平行的直線的方程;
(3)過點(diǎn)作互相垂直的直線,,與圓交于兩點(diǎn),與圓交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖統(tǒng)計(jì)了截止2019年年底中國電動車充電樁細(xì)分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計(jì),下列說法正確的是( )
中國電動車充電樁細(xì)分產(chǎn)品占比情況:
中國電動車充電樁細(xì)分產(chǎn)品保有量情況:(單位:萬臺)
A.私人類電動汽車充電樁保有量增長率最高的年份是2018年
B.公共類電動汽車充電樁保有量的中位數(shù)是25.7萬臺
C.公共類電動汽車充電樁保有量的平均數(shù)為23.12萬臺
D.從2017年開始,我國私人類電動汽車充電樁占比均超過
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,且與的圖象有一個斜率為1的公切線(為自然對數(shù)的底數(shù)).
(1)求;
(2)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x,直線l交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,若k1k2=﹣2,則△AOB面積的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ2﹣4ρcosθ+3=0.
(1)求曲線C1的一般方程和曲線C2的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線C1上,點(diǎn)Q曲線C2上,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),直線為平面內(nèi)的動點(diǎn),過點(diǎn)作直線的垂線,垂足為點(diǎn),且.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)作兩條互相垂直的直線與分別交軌跡于四點(diǎn).求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com