【題目】已知拋物線C:y2=4x,直線l交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,若k1k2=﹣2,則△AOB面積的最小值為_____.
【答案】4
【解析】
由題意可設(shè)直線AB的方程為: x=my+b與拋物線方程聯(lián)立可得根與系數(shù)的關(guān)系、利用斜率公式得出直線AB過(guò)定點(diǎn),再利用三角形的面積計(jì)算公式即可得出結(jié)論.
由題意可設(shè)直線AB的方程為:x=my+b.
聯(lián)立,化為y2﹣4my﹣4b=0,
∴y1+y2=4m,y1y2=﹣4b.
∵直線OA,OB的斜率分別為k1,k2,k1k2=﹣2.
∴2.
∴y1y2=﹣8,
∴﹣4b=﹣8,
∴b=2.
因此直線AB過(guò)定點(diǎn)M(2,0).
∴△AOB面積S|y1﹣y2|,
因此當(dāng)m=0時(shí),△AOB的面積取得最小值4.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn=2n+1﹣2,數(shù)列{bn}是首項(xiàng)為a1,公差為d(d≠0)的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),PA=PD=AD=2,BC=1,.
(1)求證:平面PQB⊥平面PAD;
(2)若M是棱PC上的一點(diǎn),且滿足,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交兩點(diǎn),是坐標(biāo)原點(diǎn),分別過(guò)點(diǎn)作,的平行線,兩平行線的交點(diǎn)剛好在橢圓上,判斷是否為定值?若為定值,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且斜率為的直線與拋物線相交于兩點(diǎn).設(shè)直線是拋物線的切線,且直線為上一點(diǎn),且的最小值為.
(1)求拋物線的方程;
(2)設(shè)是拋物線上,分別位于軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),且.求證:直線必過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)若在(1)的條件下,存在實(shí)數(shù),使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)氣象部門(mén)預(yù)報(bào),在距離某個(gè)碼頭A南偏東45°方向的600km處的熱帶風(fēng)暴中心B正以30km/h的速度向正北方向移動(dòng),距離風(fēng)暴中心450km以內(nèi)的地區(qū)都將受到影響,從現(xiàn)在起經(jīng)過(guò)___小時(shí)后該碼頭A將受到熱帶風(fēng)暴的影響(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖得,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測(cè)公司2017年5月份(即時(shí))的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不形同,考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表見(jiàn)上表.
經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?
(參考公式:回歸直線方程為,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)當(dāng)時(shí),求證:對(duì)于,恒成立;
(2)若存在,使得當(dāng)時(shí),恒有成立,試求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com