【題目】函數(shù)y=x+sin|x|,x∈[﹣π,π]的大致圖象是( )
A.
B.
C.
D.
【答案】A
【解析】解:由題意可知: ,
當(dāng)0≤x≤π時(shí),∵y=x+sinx,∴y′=1+cosx≥0,所以函數(shù)y=x+sinx在[0,π]上為增函數(shù);
又由sinx≥0[0,π]上恒成立,故函數(shù)y=x+sinx[0,π]上在y=x的上方;
當(dāng)﹣π≤x<0時(shí),∵y=x﹣sinx,∴y′=1﹣cosx≥0,所以函數(shù)y=x+sinx在[0,π]上為增函數(shù);
又由sinx≤0[﹣π,0]上恒成立,故函數(shù)y=x+sinx[﹣π,0]上在y=x的下方;
又函數(shù)y=x+sin|x|,x∈[﹣π,π],恒過(﹣π,﹣π)和(π,π)兩點(diǎn),所以A選項(xiàng)對(duì)應(yīng)的圖象符合.
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的圖象的相關(guān)知識(shí)可以得到問題的答案,需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1 , 則下列四個(gè)命題:
①P在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A﹣D1PC的體積不變;
②P在直線BC1上運(yùn)動(dòng)時(shí),直線AP與平面ACD1所成角的大小不變;
③P在直線BC1上運(yùn)動(dòng)時(shí),二面角P﹣AD1﹣C的大小不變;
④M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則M點(diǎn)的軌跡是過D1點(diǎn)的直線
其中真命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為貫徹落實(shí)教育部6部門《關(guān)于加快發(fā)展青少年校園足球的實(shí)施意見》,全面提高我市中學(xué)生的體質(zhì)健康水平,培養(yǎng)拼搏意識(shí)和團(tuán)隊(duì)精神,普及足球知識(shí)和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊(duì),現(xiàn)統(tǒng)計(jì)了這20名學(xué)生的身高,記錄入如表:(設(shè)ξ為隨機(jī)變量)
身高(cm) | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人數(shù) | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)請(qǐng)計(jì)算這20名學(xué)生的身高的中位數(shù)、眾數(shù),并補(bǔ)充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學(xué)生分別記為A,B,C,D,現(xiàn)從這四名學(xué)生選2名擔(dān)任正副門將,請(qǐng)利用列舉法列出所有可能情況,并求學(xué)生A入選門將的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F (2,0)為其右焦點(diǎn).
(1)求橢圓C的方程和離心率e;
(2)若平行于OA的直線l與橢圓有公共點(diǎn),求直線l在y軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cosx+sinx,1), =(cosx+sinx,﹣1)函數(shù)g(x)=4 .
(1)求函數(shù)g(x)在[ , ]上的值域;
(2)若x∈[0,2016π],求滿足g(x)=0的實(shí)數(shù)x的個(gè)數(shù);
(3)求證:對(duì)任意λ>0,都存在μ>0,使g(x)+x﹣4<0對(duì)x∈(﹣∞,λμ)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)兩個(gè)非零向量 與 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ).求證:A,B,D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k,使k + 和 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 +y2=1(m>1)和雙曲線 ﹣y2=1(n>0)有相同的焦點(diǎn)F1 , F2 , P是它們的一個(gè)交點(diǎn),則△F1PF2的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.隨m,n的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知()的最小值為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角, , 的對(duì)邊分別為, , ,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[﹣ , ]上的最小值和最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com