【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當時, ).
(1)當時,求的解析式;
(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當時, 有最大值.
【答案】(1);(2)詳見解析;(3).
【解析】試題分析:(1)根據(jù)分段函數(shù)的奇偶性可得當時,求的解析式;(2)由于可得恒成立,得在上為增函數(shù),根據(jù)對稱性得在上為減函數(shù);(3)討論時,當時兩種情況,研究單調(diào)性并求最值,舍去不合題意的情況,即可得結(jié)論.
試題解析: (1)設(shè),則,又是偶函數(shù), .
(2),又,即在上為增函數(shù).
(3)當時, 在上是增函數(shù), ,(不合題意,舍去).
當時, ,令,如下表:
↗ | 最大值 | ↘ |
在處取得最大值,滿足條件,當時,
在上單調(diào)遞減, 在無最大值,所以存在,使在上有最大值.
科目:高中數(shù)學 來源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各選項中,一定符合上述指標的是( )
①平均數(shù)≤3;②標準差S≤2;③平均數(shù)≤3且標準差S≤2;④平均數(shù)≤3且極差小于或等于2;⑤眾數(shù)等于1且極差小于或等于1.
A.①② B.③④
C.③④⑤ D.④⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計).易拉罐的體積為 ,設(shè)圓柱的高度為 ,底面半徑為 ,且.假設(shè)該易拉罐的制造費用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費用為元/ ,易拉罐上下底面的制造費用均為元/ (, 為常數(shù),且).
(1)寫出易拉罐的制造費用(元)關(guān)于的函數(shù)表達式,并求其定義域;
(2)求易拉罐制造費用最低時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1處有極值10,求a,b的值;
(II)若當a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a是實數(shù),函數(shù)f(x)= (x-a).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.
①寫出g(a)的表達式;
②求a的取值范圍,使得-6≤g(a)≤-2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x2+x(0<a<1,x∈R).若對于任意的三個實數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間有如下對應數(shù)據(jù):
(1)求回歸直線方程;
(2)試預測廣告費支出為萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過的概率.(參考數(shù)據(jù): .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com