在△ABC中,a、b、c是∠A、∠B、∠C的對(duì)邊,已知∠B=45°,∠C=60°,a=2(
3
+1)
,求△ABC的面積S△ABC
分析:先通過(guò)三角形的內(nèi)角和求出∠A,進(jìn)而求出sinA,再通過(guò)正弦定理求出b,再利用面積公式求出三角形的面積.
解答:解:∵A=180°-(B+C)=75°,
sinA=sin750=sin(450+300)=
6
+
2
4

由正弦定理
a
sinA
=
b
sinB
?
2(
3
+1)
6
+
2
4
=
b
2
2
?b=4
,
S△ABC=
1
2
absinC=
1
2
•2(
3
+1)•4•
3
2
=6+2
3
點(diǎn)評(píng):本題主要考查了正弦定理和面積公式的應(yīng)用.正弦定理指出了任意三角形中三條邊與對(duì)應(yīng)角的正弦值之間的一個(gè)關(guān)系式,在解三角形問(wèn)題時(shí),應(yīng)注意靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱(chēng)軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案