命題“?x∈R,x2+ax+1≥0”為真命題,則實數(shù)a的取值范圍是( 。
A、[-2,2]
B、(-2,2)
C、(-∞,-2]∪[2,+∞)
D、(-∞,-2)∪(2,+∞)
考點:全稱命題
專題:簡易邏輯
分析:命題“?x∈R,x2+ax+1≥0”為真命題,轉(zhuǎn)化為△=a2-4≤0,解出即可.
解答: 解:∵命題P:“?x∈R,x2+ax+1≥0”是真命題.
∴令f(x)=x2+ax+1,則必有△=a2-4≤0,
解得-2≤a≤2.
∴實數(shù)a的取值范圍是[-2,2].
故選:A.
點評:熟練掌握一元二次不等式的解集與判別式△的關系、“三個二次”的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示是三項式系數(shù)表排成的三角形,它的特點是每行各數(shù)是它肩上三個數(shù)之和(肩上無數(shù)視為零),每行首尾都是1,則
(Ⅰ)表中第10行第3個數(shù)是
 
;
(Ⅱ)表中前n行的各數(shù)之和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)左支上一點,F(xiàn)1,F(xiàn)2是雙曲線的左右兩個焦點,且
PF1
PF2
=0,線段PF2的垂直平分線恰好是該雙曲線的一條漸近線,則離心率為( 。
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的等比數(shù)列{an},a1,a2+2,a3構(gòu)成等差數(shù)列,且a1=1,則等比數(shù)列{an}的公比為( 。
A、3或-1B、1C、-1D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為a的正方體ABCD-A1B1C1D1中,若點P是棱上一點,則滿足PA+PC1=2a的點P的個數(shù)為( 。
A、3個B、4個
C、5 個D、6個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

運行如圖的程序框圖,輸出的S為(  )
A、7B、10C、11D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1,l2和平面α,則l1∥l2的一個必要不充分的條件是( 。
A、l1∥α且l2∥α
B、l1⊥α且l2⊥α
C、l1∥α且l2
D、l1與l2成等角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由直線x+y-1=0,y-2=0和x-1=0所圍成的三角形區(qū)域(包括邊界)用不等式組可表示為(  )
A、
x+y-1≤0
y≤2
x≥1
B、
x+y-1≥0
y≤2
x≤1
C、
x+y-1≥0
y≥2
x≥1
D、
x+y-1≤0
y≤2
x≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

連續(xù)自然數(shù)按規(guī)律排成如圖:根據(jù)規(guī)律,從2010到2012,箭頭的方向依次為( 。
A、↓→B、→↑C、↑→D、→↓

查看答案和解析>>

同步練習冊答案