直線tx+y-t+1=0(t∈R)與圓x2+y2-2x+4y-4=0的位置關(guān)系為(  )

A.相交 B.相切 C.相離 D.以上都有可能

 

A

【解析】∵圓的方程可化為(x-1)2+(y+2)2=9,

∴圓心為(1,-2),半徑r=3,圓心到直線的距離d=≤1<r,即直線與圓相交.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:填空題

曲線C是平面內(nèi)與兩個定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個結(jié)論:

①曲線C過坐標(biāo)原點(diǎn);

②曲線C關(guān)于坐標(biāo)原點(diǎn)對稱;

③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2.

其中,所有正確結(jié)論的序號是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:填空題

已知F是橢圓C的一個焦點(diǎn),B是短軸的一個端點(diǎn),線段BF的延長線交C于點(diǎn)D,且=2,則C的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

直線ax+by+c=0與圓x2+y2=9相交于兩點(diǎn)M、N,若c2=a2+b2,則·(O為坐標(biāo)原點(diǎn))等于(  )

A.-7 B.-14 C.7 D.14

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

已知圓C:x2+(y-3)2=4,過A(-1,0)的直線l與圓C相交于P,Q兩點(diǎn),若|PQ|=2,則直線l的方程為(  )

A.x=-1或4x+3y-4=0

B.x=-1或4x-3y+4=0

C.x=1或4x-3y+4=0

D.x=1或4x+3y-4=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:解答題

已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長為4,半徑小于5.

(1)求直線PQ與圓C的方程;

(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:選擇題

過點(diǎn)M(1,2)的直線l將圓(x-2)2+y2=9分成兩段弧,當(dāng)其中的劣弧最短時,直線的方程是(  )

A.x=1 B.y=1

C.x-y+1=0 D.x-2y+3=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:選擇題

已知點(diǎn)P在y=x2上,且點(diǎn)P到直線y=x的距離為,這樣的點(diǎn)P的個數(shù)是(  )

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運(yùn)算(解析版) 題型:選擇題

若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)·(2b)=-2,則x=________.

 

查看答案和解析>>

同步練習(xí)冊答案