分析 (1)推導(dǎo)出BD=$\frac{1}{2}$BA=$\sqrt{2}$,從而∠B1BD=90°,由此能證明B1D⊥BD.
(2)推導(dǎo)出CD⊥平面ABB1A,從而平面CDA1⊥平面ABB1A,過A作AE⊥DA1于E,則AE⊥平面A1DC,AE即為點(diǎn)A到平面A1CD的距離,由此利用等面積法能求出點(diǎn)A到平面A1CD的距離.
解答 (本小題滿分12分)
證明:(1)∵在三棱柱ABC-A1B1C1中,D為AB的中點(diǎn),
CD⊥DA1,AC⊥BC,∠ABB1=45°,AC=BC=BB1=2.
∴BD=$\frac{1}{2}$BA=$\sqrt{2}$,…(2分)
又BB1=2,且∠B1BD=45°,∴∠B1BD=90°,
∴B1D⊥BD.…(6分)
解:(2)∵CD⊥BA,CD⊥DA1,∴CD⊥平面ABB1A,
∴平面CDA1⊥平面ABB1A,…(8分)
過A作AE⊥DA1于E,則AE⊥平面A1DC,∴AE即為點(diǎn)A到平面A1CD的距離,…(10分)
A1D=$\sqrt{{B}_{1}{D}^{2}+{B}_{1}{{A}_{1}}^{2}}$=$\sqrt{10}$,
故在△ADA1中,
由等面積法得AE=$\frac{\sqrt{2}×\sqrt{2}}{\sqrt{10}}$=$\frac{\sqrt{10}}{5}$.…(12分)
點(diǎn)評(píng) 本題考查線線垂直的證明,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | ±$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 16 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{16}$=1 | B. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1 | C. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{36}$=1 | D. | $\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com