【題目】如圖,四棱錐中,平面,,為等邊三角形,.
(1)證明:;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
1)推導(dǎo)出,從而,設(shè)為邊的中點(diǎn),連結(jié),,推導(dǎo)出四邊形為平行四邊形,從而,進(jìn)而是,面,由此能證明.
(2)推導(dǎo)出面面,作于點(diǎn),平面,以為原點(diǎn),方向?yàn)?/span>軸,方向?yàn)?/span>軸,方向?yàn)?/span>軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.
(1)平面,平面,面面,
,
設(shè)為邊的中點(diǎn),連結(jié),,
,四邊形為平行四邊形,,
又為等邊三角形,,
,面
面,
.
(2)面,平面,面面,
在面中,作于點(diǎn),平面,
以為原點(diǎn),方向?yàn)?/span>軸,方向?yàn)?/span>軸,方向?yàn)?/span>軸,建立空間直角坐標(biāo)系,
如圖所示.則,2,,,2,,,0,,,
則,,
設(shè)為平面的法向量,則,
取,得,
為平面的法向量,
則.
二面角為銳角,
二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面,,是線段上一點(diǎn),且.三棱錐的各個(gè)頂點(diǎn)都在球表面上,過點(diǎn)作球的截面,若所得截面圓的面積的最大值與最小值之差為,則球的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,且在橢圓E上.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)已知垂直于x軸的直線交E于A、B兩點(diǎn),垂直于y軸的直線交E于C、D兩點(diǎn),與的交點(diǎn)為P,且,間:是否存在兩定點(diǎn)M,N,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《宋人撲棗圖軸》是作于宋朝的中國古畫,現(xiàn)收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結(jié)實(shí)累累,小孩群來攀扯,枝椏不停晃動(dòng),粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來決定誰模仿哪個(gè)動(dòng)作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸,長度單位相同,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線過點(diǎn),傾斜角為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線的參數(shù)方程的標(biāo)準(zhǔn)形式;
(2)已知直線交曲線于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在處切線垂直于軸.
(1)求的值;
(2)求函數(shù)在上的最小值;
(3)若恒成立,求滿足條件的整數(shù)的最大值.
(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點(diǎn)為,,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓于P,M兩點(diǎn).
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為矩形,是的中點(diǎn),是的中點(diǎn),點(diǎn)在線段上且.
(1)證明平面;
(2)當(dāng)為多大時(shí),在線段上存在點(diǎn)使得平面且與平面所成角為同時(shí)成立?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com