已知tanα=
1
2
,則cos2α的值為( 。
A、-
1
5
B、-
3
5
C、
3
5
D、
4
5
分析:利用余弦的二倍角公式可求得cos2α=cos2α-sin2α,進(jìn)而利用同角三角基本關(guān)系,使其除以sin2α+cos2α,分子分母同時(shí)除以cosa,轉(zhuǎn)化成正切,然后把tanα的值代入即可.
解答:解:cos2α=cos2α-sin2α=
cos2α-sin2α
cos2α+sin2α
=
1-tan2α
1+tan2α
=
3
5
,
故選C.
點(diǎn)評(píng):本題主要考查了同角三角函數(shù)的基本關(guān)系和二倍角的余弦函數(shù)的公式.解題的關(guān)鍵是利用同角三角函數(shù)中的平方關(guān)系,完成了弦切的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
12
,則sinαcosα-2sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知tanθ=- 
1
2
,求
1+2sinθcosθ
sin2θ-cos2θ
的值.
(2)化簡:
sin(2π-α)cos(
11π
2
-α)
sin(-π-α)sin(
2
+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
12
,求sin2β-3sinβcosβ+4cos2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
2
,則
(sinα+cosα)2
cos2α
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
1
2
,tan(α-β)=-
1
3
,α,β均為銳角,則β等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案