5.定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.則f(3),f(-1),f(2)的大小關(guān)系是f(3)<f(2)<f(-1).

分析 由偶函數(shù)性質(zhì)可得f(-1)=f(1),結(jié)合函數(shù)f(x)在[0,+∞)為減函數(shù),可得結(jié)論.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(-1)=f(1),
又∵對(duì)任意的x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.
∴函數(shù)f(x)在[0,+∞)為減函數(shù),
∴f(3)<f(2)<f(1),
即f(3)<f(2)<f(-1),
故答案為:f(3)<f(2)<f(-1)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,函數(shù)的奇偶性,是函數(shù)圖象和性質(zhì)的簡(jiǎn)單綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.等比數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)的和為Sn,若S6=9S3,則a6=32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)α:A={x|-1<x<1},β:B={x|b-a<x<b+a}.
(1)設(shè)a=2,若α是β的充分不必要條件,求實(shí)數(shù)b的取值范圍;
(2)在什么條件下,可使α是β的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,△ABC中,點(diǎn)E、F、G分別在邊BC、AC、AB上,且$\frac{AG}{GB}$=$\frac{BE}{EC}$=$\frac{CF}{FA}$=$\frac{1}{2}$,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$、$\overrightarrow$表示向量$\overrightarrow{AF}$;
(2)證明:$\overrightarrow{AE}$+$\overrightarrow{BF}$+$\overrightarrow{CG}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若復(fù)數(shù)Z1=2-i,Z2=1-3i,則復(fù)數(shù)$\frac{i}{Z_1}+\frac{Z_2}{5}$的虛部等于$-\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,三棱錐P-ABC中,E,F(xiàn)分別是AB,BC的中點(diǎn),M,N分別是PE,PF上的點(diǎn).
(1)M,N分別是PE,PF的中點(diǎn)時(shí),求證:MN∥平面ABC.
(2)當(dāng)MN∥平面ABC時(shí),求證:MN∥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$f(x)={(\frac{1}{3})^x}-1,x∈[{-1,\left.2]}\right.$的值域?yàn)?[-\frac{8}{9},2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)y=loga(x+3)-$\frac{8}{9}$(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,則A的坐標(biāo)是$(-2,-\frac{8}{9})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若函數(shù)y=2sin(x+θ)的圖象向右平移$\frac{π}{6}$個(gè)單位,再向上平移2個(gè)單位后,它的一條對(duì)稱軸是$x=\frac{π}{4}$,則θ的一個(gè)可能的值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步練習(xí)冊(cè)答案