過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則OA+8•OB的最小值是
2
65
2
65
分析:設∠OBP=α,由O<α<
π
2
,∠OAP=
π
2
,知OA+8OB=
1
cosα
+
8
sinα
≥2
1
cosα
8
sinα
,當且僅當
1
cosα
=
8
sinα
,sinα=8cosα時,OA+8OB=
1
cosα
+
8
sinα
取最小值.此時,sinα=8cosα,由此能求出OA+8•OB的最小值.
解答:解:設∠OBP=α,
∵O<α<
π
2
,∠OAP=
π
2
,
OA=
1
sin(
π
2
-α)
=
1
cosα

OB=
1
sinα
,
∴OA+8OB=
1
sin(
π
2
-α)
+
8
sinα
=
1
cosα
+
8
sinα
≥2
1
cosα
8
sinα

當且僅當
1
cosα
=
8
sinα
,sinα=8cosα時,OA+8OB=
1
cosα
+
8
sinα
取最小值.
此時,sinα=8cosα,
cos2α=
1
65
,cosα=
65
65
,sinα=
8
65
65
 
,
1
cosα
+
8
sinα
=
65
65
=2
65

故OA+8•OB的最小值為2
65
點評:本題考查直線和圓的方程的應用,是基礎題.解題時要認真審題,仔細解答,注意合理地運用均值不等式進行解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過圓x2+y2=1上一點作切線與x軸,y軸的正半軸交于A、B兩點,則|AB|的最小值為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則|
OA
+2
OB
|的最小值是
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:填空題

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則|+2|的最小值是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:填空題

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則|+2|的最小值是   

查看答案和解析>>

同步練習冊答案