【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(I)若為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;
(Ⅱ)設直線的參數(shù)方程為(為參數(shù),,且直線與曲線相交于,兩點,求面積的最大值.
【答案】(Ⅰ) .(Ⅱ) .
【解析】
(I)根據(jù)題意設出P,M的極坐標 , 由此寫出 , ,又 化簡整理可得的極坐標方程,進而可得解;(Ⅱ)把直線的參數(shù)方程代入圓的方程,得到關于t的一元二次方程,利用韋達定理表示 , ,利用代入整理求解即可。
(I)設的極坐標為,,的極坐標為 .由題設知,
.
由得的極坐標方程為 ,
因此的直角坐標方程為 .
(Ⅱ)方法一:將代入,
整理得,所以,,
設,則的面積
,
當時,的面積取到最大值,且最大值為.
方法二:由直線的參數(shù)方程為(為參數(shù),),
化為普通方程,其中,.
由,消去,整理得,
設,,
則,,
設,則的面積
,
當時,的面積取到最大值,且最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點到其準線的距離為.
(1)求拋物線的方程;
(2)設直線與拋物線相交于兩點,問拋物線上是否存在點,使得是正三角形?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓柱,底面半徑為1,高為2,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側(cè)面到達點,其路徑最短時在側(cè)面留下的曲線記為:將軸截面繞著軸,逆時針旋轉(zhuǎn) 角到位置,邊與曲線相交于點.
(1)當時,求證:直線平面;
(2)當時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為6.
(1)求橢圓的方程;
(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)點在圓上,且在第一象限,過作的切線交橢圓于兩點,問: 的周長是否為定值?若是,求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90,,M是線段AE上的動點.
(1)試確定點M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當m=0時,求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若函數(shù)f(x)的圖象在x軸的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】阿基米德(公元前年—公元前年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標系中,橢圓:的面積為,兩焦點與短軸的一個頂點構(gòu)成等邊三角形.
(1)求橢圓的標準方程;
(2)過點的直線與交于不同的兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖,漢諾塔問題是指有3根桿子A,B,C.B桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動一個碟子,大的碟子不能疊在小的碟子上面.把B桿上的4個碟子全部移到A桿上,最少需要移動( )次. ( )
A.12 B.15 C.17 D.19
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com