【題目】如圖,在△ABC中,已知A(5,-2),B(7,3),且AC邊的中點M在y軸上,BC的中點N在x軸上.
(1)求點C的坐標;
(2)求邊上的中線所在直線方程.
【答案】(1)(-5,-3);(2)7x-22y-31=0.
【解析】試題分析:(1)根據(jù)題意得到可設(shè)設(shè)M(0,a),N(b,0),C(m,n), ∵A(5,-2),B(7,3),
根據(jù)中點坐標公式得到點C的坐標;(2)根據(jù)中點坐標公式得到點的坐標為,由兩點式得到AB中線所在直線的方程.
解析:
(1)設(shè)M(0,a),N(b,0),C(m,n), ∵A(5,-2),B(7,3),
又M是AC的中點,∴5+m=0,m=-5,
N是BC的中點,∴3+n=0,n=-3,
∴C點坐標為(-5,-3),
(2)設(shè)AB的中點為,則點的坐標為
由兩點式得AB邊中線所在直線方程為
整理得:7x-22y-31=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,B(0,2),C(1,0),斜率為 的直線l過點A,且l和以C為圓心的圓相切.
(1)求圓C的方程;
(2)在圓C上是否存在點P,使得 ,若存在,求出所有的點P的坐標;若不存在說明理由;
(3)若不過C的直線m與圓C交于M,N兩點,且滿足CM,MN,CN的斜率依次為等比數(shù)列,求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結(jié)論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.
所有正確結(jié)論的序號是( )
A.①②
B.③④
C.①②③
D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為x,求x的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì):對任意的 ,,使得成立.
(Ⅰ)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(Ⅱ)求證;
(Ⅲ)若,求數(shù)集中所有元素的和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點,沿EF將△CEF折起,得到如圖2所示的四棱錐C′﹣ABFE
(1)求證:AB⊥平面AEC′;
(2)當四棱錐C′﹣ABFE體積取最大值時,
①若G為BC′中點,求異面直線GF與AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sin( ωx)cos( ωx)+2cos2( ωx)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點Q在側(cè)棱PC上,且PQ=2QC.
(1)求證:PA∥平面QBD;
(2)求證BD⊥AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com