分析 由3an+2=2an+1+an,變形為:an+2-an+1=-$\frac{1}{3}$(an+1-an),利用等比數(shù)列的通項公式、“累加求和”即可得出.
解答 解:由3an+2=2an+1+an,
變形為:an+2-an+1=-$\frac{1}{3}$(an+1-an),
∴數(shù)列{an+1-an}是等比數(shù)列,首項為1,公比為-$\frac{1}{3}$.
∴an+1-an=$(-\frac{1}{3})^{n-1}$.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=$(-\frac{1}{3})^{n-2}$+$(-\frac{1}{3})^{n-3}$+…+$(-\frac{1}{3})$+1+1
=$\frac{1-(-\frac{1}{3})^{n-1}}{1-(-\frac{1}{3})}$+1
=$\frac{3}{4}$$[1-(-\frac{1}{3})^{n-1}]$+1.當n=1,2時也成立.
∴an=$\frac{3}{4}$$[1-(-\frac{1}{3})^{n-1}]$+1.
點評 本題考查了遞推關系、等比數(shù)列的通項公式、“累加求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b-1 | B. | a>b+1 | C. | |a|>|b| | D. | ($\frac{1}{2}$)a>($\frac{1}{2}$)b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com