【題目】已知橢圓,為橢圓的左、右焦點,點在直線上且不在軸上,直線與橢圓的交點分別為和,為坐標原點.
設直線的斜率為,證明:
問直線上是否存在點,使得直線的斜率滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.
【答案】(1)證明見解析;(2).
【解析】
(1)設出P的坐標,表示出斜率,化簡可得結論;
(2)設出直線的方程與橢圓方程聯(lián)立,求出斜率,利用kOA+kOB+kOC+kOD=0,即可得到結論.
因為橢圓方程為,所以F1(﹣1,0)、F2(1,0)
設P(x0,2﹣x0),則,,
所以
(2)記A、B、C、D坐標分別為(x1,y1)、(x1,y1)、(x1,y1)、(x1,y1).
設直線PF1:x=m1y﹣1,PF2:x=m2y+1
聯(lián)立可得
,
代入,可得
同理,聯(lián)立PF2和橢圓方程,可得
由及m1﹣3m2=2(由(1)得)可解得,或,
所以直線方程為或,
所以點P的坐標為(0,2)或
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b是異面直線,給出下列結論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無數(shù)個平面,使直線b與平面交于一個定點,且直線平面.
則所有正確結論的序號為( )
A.②③B.①③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,與都為等邊三角形,且側面與底面互相垂直,為的中點,點在線段上,且,為棱上一點.
(1)試確定點的位置,使得平面;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是由非負整數(shù)組成的無窮數(shù)列,該數(shù)列前n項的最大值記為,第n項之后的各項的最小值記為,設.
(1)若為,是一個周期為4的數(shù)列,寫出的值;
(2)設d為非負整數(shù),證明:)的充要條件是是公差為d的等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種“籠具”由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.
(1)求這種“籠具”的體積(結果精確到0.1);
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個“籠具”,該材料的造價為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,F關于原點的對稱點為P,過F作軸的垂線交拋物線于M,N兩點,給出下列三個結論:
①必為直角三角形;
②直線必與拋物線相切;
③的面積為.其中正確的結論是___.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面四邊形中(圖1),為的中點,,且,現(xiàn)將此平面四邊形沿折起,使得二面角為直二面角,得到一個多面體,為平面內一點,且為正方形(圖2),分別為的中點.
(1)求證:平面//平面;
(2)在線段上是否存在一點,使得平面與平面所成二面角的余弦值為?若存在,求出線段的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com