12.設(shè)數(shù)列{dn}的前n項(xiàng)的和為Sn,d1=1,$\frac{{S}_{n-1}}{{S}_{n}}$=4n(n≥2),求Sn

分析 由d1=1,$\frac{{S}_{n-1}}{{S}_{n}}$=4n(n≥2),可得$\frac{{S}_{n}}{{S}_{n-1}}$=$\frac{1}{{4}^{n}}$.利用“累乘求積”方法、等差數(shù)列的求和公式、指數(shù)的運(yùn)算法則即可得出.

解答 解:∵d1=1,$\frac{{S}_{n-1}}{{S}_{n}}$=4n(n≥2),∴$\frac{{S}_{n}}{{S}_{n-1}}$=$\frac{1}{{4}^{n}}$.
∴Sn=$\frac{{S}_{n}}{{S}_{n-1}}$$•\frac{{S}_{n-1}}{{S}_{n-2}}$•…•$\frac{{S}_{3}}{{S}_{2}}$•$\frac{{S}_{2}}{{S}_{1}}$•S1=$\frac{1}{{4}^{n}}$×$\frac{1}{{4}^{n-1}}$×…×$\frac{1}{{4}^{3}}×\frac{1}{{4}^{2}}$×1=$\frac{1}{{4}^{\frac{(n-1)(2+n)}{2}}}$=$\frac{1}{{2}^{{n}^{2}+n-2}}$.

點(diǎn)評 本題考查了遞推關(guān)系、“累乘求積”方法、等差數(shù)列的求和公式、指數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,E為BC的中點(diǎn),AB=1,AD=2,PA=2.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=lnx-2x3與g(x)=2x3-ax,若f(x)的圖象上存在點(diǎn)A滿足它關(guān)于y軸的對稱點(diǎn)B落在g(x)的圖象上,則實(shí)數(shù)a的取值范圍是a≤$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y滿足不等式組$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≥2}\\{y-x≤2}\end{array}\right.$,則z=2y+x的最小值為(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)銳角△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且$\sqrt{3}$ccosA+$\sqrt{3}$acosC=2asinB
(1)求A
(2)若△ABC的面積為2$\sqrt{3}$,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知1<x<y<z,則a=2x,b=3-y,c=log0.5z,則a,b,c的大小關(guān)系是(  )
A.a<b<cB.c<b<aC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l:x+y=1在矩陣$A=[\begin{array}{l}m,n\\ 0,1\end{array}]$對應(yīng)的變換作用下變?yōu)橹本l':x-y=1,求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex+m-lnx.
(I) 設(shè)x=1是函數(shù)f(x)的極值點(diǎn),求證:ex-elnx≥e;
(II) 設(shè)x=x0是函數(shù)f(x)的極值點(diǎn),且f(x)≥0恒成立,求m的取值范圍.(其中常數(shù)a滿足alna=1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過拋物線y=ax2(a>$\frac{1}{12}$)的焦點(diǎn)F作圓C:x2+y2-8y+15=0的一條切線,切點(diǎn)為 M,若|FM|=2$\sqrt{2}$.
(1)求實(shí)數(shù)a的值;
(2)直線l經(jīng)過點(diǎn)F,且與拋物線交于點(diǎn) A、B,若以 A B為直徑的圓與圓C相切,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案