分析 由題意可知f(x)=g(-x)有解,即y=lnx與y=ax有交點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義,求出切點(diǎn),結(jié)合圖象,可知a的范圍.
解答 解:∵函數(shù)f(x)=lnx-2x3與g(x)=2x3-ax,
若f(x)的圖象上存在點(diǎn)A滿足它關(guān)于y軸的對稱點(diǎn)B落在g(x)的圖象上,
∴f(x)=g(-x)有解,
∴l(xiāng)nx-2x3=-2x3+ax,
∴l(xiāng)nx=ax在(0,+∞)有解,
分別設(shè)y=lnx,y=ax,
若y=ax為y=lnx的切線,
∴y′=$\frac{1}{x}$,
設(shè)切點(diǎn)為(x0,y0),
∴a=$\frac{1}{{x}_{0}}$,ax0=lnx0,
∴x0=e,
∴a=$\frac{1}{e}$,
結(jié)合圖象可知,a≤$\frac{1}{e}$
故答案為:a≤$\frac{1}{e}$
點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,以及函數(shù)值的問題,關(guān)鍵是轉(zhuǎn)化為y=lnx與y=ax有交點(diǎn),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x0∈(0,1) | B. | x0∈(1,2) | C. | x0∈(2,3) | D. | x0∈(3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,$\frac{π}{4}$,1) | B. | (2$\sqrt{2}$,$\frac{π}{4}$,1) | C. | (2,$\frac{5π}{4}$,1) | D. | (2$\sqrt{2}$,$\frac{5π}{4}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com