2.已知集合A={x|0<x<3},B={x|(x+2)(x-1)>0},則A∩B等于(  )
A.(0,3)B.(1,3)C.(2,3)D.(-∞,-2)∪(0,+∞)

分析 化簡(jiǎn)集合B,根據(jù)交集的定義寫(xiě)出A∩B.

解答 解:集合A={x|0<x<3},
B={x|(x+2)(x-1)>0}={x|x<-2或x>1},
所以A∩B={x|1<x<3}=(1,3).
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若兩條直線2x-y=0與ax-2y-1=0互相垂直,則實(shí)數(shù)a的值為( 。
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,A,B是圓x2+y2=4上的兩個(gè)動(dòng)點(diǎn),且AB=2,則線段AB中點(diǎn)M的軌跡方程為x2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)$P(1,\frac{3}{2})$和動(dòng)點(diǎn)Q(m,n)都在離心率為$\frac{1}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求橢圓的方程;
(2)若直線l的方程為3mx+4ny=0,點(diǎn)R(點(diǎn)R在第一象限)為直線l與橢圓的一個(gè)交點(diǎn),點(diǎn)T在線段OR上,且QT=2.
①若m=-1,求點(diǎn)T的坐標(biāo);
②求證:直線QT過(guò)定點(diǎn)S,并求出定點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.(ax2+$\frac{1}{x}$)6展開(kāi)式的常數(shù)項(xiàng)為15,則實(shí)數(shù)a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.定義在R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈(0,1)時(shí),f(x)=x-1,則函數(shù)y=f(x)-log4|x|的零點(diǎn)個(gè)數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若一圓弧長(zhǎng)等于它所在圓的內(nèi)接正三角形的邊長(zhǎng),則該弧所對(duì)的圓心角弧度數(shù)為(  )
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.定義在實(shí)數(shù)集R上的函數(shù)f(x)都可以寫(xiě)為一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和的形式,如果f(x)=2x+1,那么( 。
A.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$B.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$
C.$g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$D.$g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五點(diǎn)法”畫(huà)出函數(shù)在一個(gè)周期內(nèi)的圖象;
(2)完整敘述函數(shù)f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的圖象可以由函數(shù)f(x)=2sinx的圖象經(jīng)過(guò)兩步怎樣的變換得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
$\frac{1}{3}$x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y02020

查看答案和解析>>

同步練習(xí)冊(cè)答案