【題目】設等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,下列結(jié)論中正確的是( )

A. B.

C. 是數(shù)列中的最大值 D. 數(shù)列無最小值

【答案】D

【解析】

根據(jù)題干條件可得到數(shù)列>1,0<q<1,數(shù)列之和越加越大,故A錯誤;根據(jù)等比數(shù)列性質(zhì)得到 進而得到B正確;由前n項積的性質(zhì)得到是數(shù)列中的最大值;開始后面的值越來越小,但是都是大于0的,故沒有最小值.

因為條件:,,可知數(shù)列>1,0<q<1,

根據(jù)等比數(shù)列的首項大于0,公比大于0,得到數(shù)列項均為正,故前n項和,項數(shù)越多,和越大,故A不正確;因為根據(jù)數(shù)列性質(zhì)得到 ,故B不對;

項之積為,所有大于等于1的項乘到一起,能夠取得最大值,故是數(shù)列中的最大值. 數(shù)列無最小值,因為開始后面的值越來越小,但是都是大于0的,故沒有最小值.D正確.

故答案為:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程是為參數(shù))以原點為極點, 軸正半軸為極軸,并取與直角坐標系相同的單位長度,建立極坐標系,曲線的極坐標方程是.

(1)求曲線, 的直角坐標方程;

(2)若、分別是曲線上的任意點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調(diào)查統(tǒng)計,通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時)之間存在如下關系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).

1)求關于的函數(shù)

2)已知車流量(單位時間內(nèi)通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學習小組在某社區(qū)隨機抽取了50人進行調(diào)查,將調(diào)查情況進行整理后制成下表:

年齡

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人數(shù)

4

5

8

5

3

年齡

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人數(shù)

6

7

3

5

4

經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機選取2人,進行跟蹤調(diào)查.

(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;

(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲同學寫出三個不等式:::,,然后將的值告訴了乙、丙、丁三位同學,要求他們各用一句話來描述,以下是甲、乙、丙、丁四位同學的描述:

乙:為整數(shù);

丙:成立的充分不必要條件;

。成立的必要不充分條件;

甲:三位同學說得都對,則的值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某船在處測得燈塔在其南偏東方向上,該船繼續(xù)向正南方向行駛5海里到處,測得燈塔在其北偏東方向上,然后該船向東偏南方向行駛2海里到處,此時船到燈塔的距離為多少海里( )

A.千米B.千米C.6千米D.5千米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等比數(shù)列的公比為,其前項和為,前項之積為,并且滿足條件:,,下列結(jié)論中正確的是( )

A. B.

C. 是數(shù)列中的最大值 D. 數(shù)列無最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),(為常數(shù)),.曲線在點處的切線與軸平行

(1)的值;

(2)的單調(diào)區(qū)間和最小值;

(3)對任意恒成立,求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案