已知函數(shù)f(x)=lg(k∈R,且k>0).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在[10,+∞)上單調(diào)遞增,求k的取值范圍.
(1)當(dāng)0<k<1時(shí),函數(shù)定義域?yàn)?/span>;當(dāng)k≥1時(shí),函數(shù)定義域?yàn)?/span>
.(2)
【解析】(1)由>0,k>0,得>0,當(dāng)0<k<1時(shí),得x<1或x>;當(dāng)k=1時(shí),得x∈R且x≠1;當(dāng)k>1時(shí),得x<或x>1.
綜上,當(dāng)0<k<1時(shí),函數(shù)定義域?yàn)?/span>;當(dāng)k≥1時(shí),函數(shù)定義域?yàn)?/span>
.
(2)由函數(shù)f(x)在[10,+∞)上單調(diào)遞增,知>0,
∴k>.又f(x)=lg=lg,由題意,對任意的x1、x2,當(dāng)10≤x1<x2,有f(x1)<f(x2),即lg<lg,
得<?(k-1)(-)<0.
∵x1<x2,∴>,∴k-1<0,即k<1.
綜上可知,k的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第7課時(shí)練習(xí)卷(解析版) 題型:填空題
已知實(shí)數(shù)a、b滿足等式a=b,下列五個(gè)關(guān)系式:
①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.
其中所有不可能成立的關(guān)系式為________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:填空題
定義在R上的函數(shù)f(x)滿足f(x)=則f(2014)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=mx2+(2m-1)x+1是偶函數(shù),則實(shí)數(shù)m=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)y=f(x)是定義在[-2,2]上的單調(diào)減函數(shù),且f(a+1)<f(2a),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
函數(shù)f(x)=的定義域?yàn)?/span>________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=,則f +f =________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD、AB距離分別為9m、3m.某廣告公司計(jì)劃在此空地上豎一塊長方形液晶廣告屏幕MNEF,MN∶NE=16∶9.線段MN必須過點(diǎn)P,端點(diǎn)M、N分別在邊AD、AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最小?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com