函數(shù)yf(x)是定義在[2,2]上的單調(diào)減函數(shù),f(a1)<f(2a)則實(shí)數(shù)a的取值范圍是________

 

[1,1)

【解析】由條件解得-1≤a<1.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)x21,對任意x∈,f4m2f(x)≤f(x1)4f(m)恒成立則實(shí)數(shù)m的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知定義在R上的函數(shù)f(x)對任意實(shí)數(shù)x、y恒有f(x)f(y)f(xy),且當(dāng)x0時(shí)f(x)0,f(1)=-.

(1)求證:f(x)為奇函數(shù);

(2)求證:f(x)R上是減函數(shù);

(3)f(x)[3,6]上的最大值與最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)是定義在正實(shí)數(shù)集上的單調(diào)函數(shù),且滿足對任意x0,都有f(f(x)lnx)1ef(1)________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)lg(k∈R,k>0)

(1)求函數(shù)f(x)的定義域;

(2)若函數(shù)f(x)[10∞)上單調(diào)遞增,k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)a>b0,f(a)f(b),bf(a)的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

求下列函數(shù)的值域:

(1) yx

(2) yx22x3,x(1,4]

(3) y,x[35];

(4) y (x>1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

求下列各題中的函數(shù)f(x)的解析式.

(1) 已知f(2)x4,f(x)

(2) 已知flgx,f(x)

(3) 已知函數(shù)yf(x)滿足2f(x)f2x,xRx≠0,f(x);

(4) 已知f(x)是二次函數(shù)且滿足f(0)1,f(x1)f(x)2xf(x)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第13課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,建立平面直角坐標(biāo)系xOyx軸在地平面上,y軸垂直于地平面單位長度為1km,某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程ykx(1k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).

(1)求炮的最大射程;

(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2km,試問它的橫坐標(biāo)a不超過多少時(shí),炮彈可以擊中它?請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案