【題目】設(shè)l為曲線C:在點(diǎn)處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)之外,曲線C在直線l的下方;
【答案】(1)(2)證明見解析
【解析】
設(shè)(),求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義知 ,即為曲線C:在點(diǎn)處的切線的斜率,代入點(diǎn)斜式即可求解;
構(gòu)造函數(shù)(),則除切點(diǎn)之外,曲線C在直線l的下方等價于(,),求函數(shù)的導(dǎo)數(shù),利用的符號判斷函數(shù)的單調(diào)性,求出時,函數(shù)的最值即可.
設(shè)(),則(),
從而曲線在點(diǎn)處的切線斜率為,
于是切線方程為,即,
因此直線l的方程為.
證明:令(),則
則除切點(diǎn)之外,曲線C在直線l的下方等價于(,).
滿足,且(,)
當(dāng)時,,,從而,于是在單調(diào)遞減;
當(dāng)時,,,從而,于是在單調(diào)遞增.
因此函數(shù)有極小值即最小值.
所以函數(shù)對任意且恒成立,
即除切點(diǎn)之外,曲線C在直線l的下方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價為元時,一年的銷售量為萬件.
(1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;
(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為,設(shè)M,N是橢圓C上位于x軸上方的兩動點(diǎn),且直線與直線平行,與交于點(diǎn)D.
(Ⅰ)求和的坐標(biāo);
(Ⅱ)求的最小值;
(Ⅲ)求證:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動點(diǎn).已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,直線是拋物線()和圓C:的公切線,切點(diǎn)(在第一象限)分別為P、Q.F為拋物線的焦點(diǎn),切線交拋物線的準(zhǔn)線于A,且.
(1)求切線的方程;
(2)求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程;
(2)已知射線,若與圓交于點(diǎn)(異于點(diǎn)),與直線交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;
②在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
③設(shè)隨機(jī)變量服從正態(tài)分布,若,則;
④對分類變量與的隨機(jī)變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大.其中正確的命題序號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球是世界普及率最高的運(yùn)動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,社會調(diào)查小組得到如下統(tǒng)計(jì)數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學(xué)校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計(jì)算y與x的相關(guān)系數(shù)r,并說明y與x的線性相關(guān)性強(qiáng)弱.
(已知:,則認(rèn)為y與x線性相關(guān)性很強(qiáng);,則認(rèn)為y與x線性相關(guān)性一般;,則認(rèn)為y與x線性相關(guān)性較):
(2)求y關(guān)于x的線性回歸方程,并預(yù)測A地區(qū)2020年足球特色學(xué)校的個數(shù)(精確到個).
參考公式和數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取個作為樣本,稱出它們的重量(單位:克)重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖(如圖).
(1)求的值,并根據(jù)樣本數(shù)據(jù),估計(jì)盒子中小球重量的眾數(shù)與平均數(shù)(精確到0.01);
(2)從盒子中裝的大量小球中,隨機(jī)抽取3個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com