已知為實數(shù),
(1)求導(dǎo)數(shù);
(2)若,求在[-2,2] 上的最大值和最小值;
(3)若上都是遞增的,求的取值范圍.

(1)(2)最大值為最小值為(3)

解析試題分析:⑴由原式得………3分
⑵由 得,此時有.
或x="-1" , 又
所以f(x)在[-2,2]上的最大值為最小值為…………………8分
⑶解法一:的圖象為開口向上且過點(0,-4)的拋物線,由條件得
 ∴-2≤a≤2.
所以的取值范圍為[-2,2]. ……………………………………12分
解法二:令 由求根公式得:
所以上非負(fù).
由題意可知,當(dāng)時, ≥0,
從而,
 解不等式組得-2≤≤2.
的取值范圍是
考點:函數(shù)求導(dǎo)數(shù)求最值判定單調(diào)性
點評:函數(shù)最值一般出現(xiàn)在極值點或線段端點處,根據(jù)導(dǎo)函數(shù)圖像上都是遞增的可得函數(shù)的導(dǎo)數(shù),解法一利用數(shù)形結(jié)合法,利用導(dǎo)函數(shù)圖像求解較簡單

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)若的極值點,求實數(shù)的值;
(II)若上為增函數(shù),求實數(shù)的取值范圍;
(Ⅲ)當(dāng)時,方程有實根,求實數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,設(shè)函數(shù)
(1)若,求函數(shù)上的最小值
(2)判斷函數(shù)的單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)上的最小值;
(2)若函數(shù)的圖像恰有一個公共點,求實數(shù)a的值;
(3)若函數(shù)有兩個不同的極值點,且,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,
(1)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,求最大的正整數(shù),使得對是自然對數(shù)的底數(shù))內(nèi)的任意個實數(shù)都有成立;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)R.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存
在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)(其中e是自然對數(shù)的底數(shù),k為正數(shù))
(1)若處取得極值,且的一個零點,求k的值;
(2)若,求在區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊答案