精英家教網 > 高中數學 > 題目詳情

已知函數
(I)若的極值點,求實數的值;
(II)若上為增函數,求實數的取值范圍;
(Ⅲ)當時,方程有實根,求實數的最大值。

(I)(II) (Ⅲ) 實數的最大值為0

解析試題分析:(I)
因為的極值點,所以,即,
解得。經檢驗,合題意 
(II)因為函數上為增函數,所以
上恒成立。
?當時,上恒成立,所以上為增函數,故 符合題意。         6分                                   
?當時,由函數的定義域可知,必須有恒成立,
故只能,所以上恒成立。  
令函數,其對稱軸為,
因為,所以,
要使上恒成立,
只要即可,即
所以。
因為,所以。
綜上所述,a的取值范圍為。 
(Ⅲ)當時,方程可化為。
問題轉化為上有解,即求函數的值域。
因為函數,令函數, 
,
所以當時,,從而函數上為增函數,
時,,從而函數上為減函數,
因此。
,所以,因此當時,b取得最大值0.   
考點:本小題主要考查導數在研究函數性質中的應用,考查學生分類討論思想的應用.
點評:導數是研究函數性質的有力工具,求極值時要注意驗根,因為極值點處的導數值為0,但是導數值為0的點不一定是極值點,涉及到含參數問題,一般離不開分類討論,分類標準要盡量做到不重不漏.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數在(1,2)上是增函數,在(0,1)上是減函數。
的值;
時,若內恒成立,求實數的取值范圍;
求證:方程內有唯一解.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

解下列導數問題:
(1)已知,求
(2)已知,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=,其中a>0,
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數。
(1)求函數的單調遞減區(qū)間;
(2)求切于點的切線方程;
(3)求函數上的最大值與最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區(qū)間;(2)求上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知的圖象經過點,且在處的切線方程是.
(I)求的解析式;
(Ⅱ)求的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數,
(1)求的極值點;
(2)若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為實數,
(1)求導數;
(2)若,求在[-2,2] 上的最大值和最小值;
(3)若上都是遞增的,求的取值范圍.

查看答案和解析>>

同步練習冊答案