設AB為過拋物線y2=2px(p>0)的焦點的弦,則|AB|的最小值為( 。
A、
P
2
B、P
C、2P
D、無法確定
分析:根據(jù)拋物線方程可得焦點坐標,進而可設直線L的方程與拋物線聯(lián)立根據(jù)韋達定理求得x1+x2,進而根據(jù)拋物線定義可求得|AB|的表達式,整理可得|AB|=2p(1+
1
k2
),由于k=tana,進而可知當a=90°時AB|有最小值.
解答:解;焦點F坐標(
p
2
,0),設直線L過F,則直線L方程為y=k(x-
p
2

聯(lián)立y2=2px得k2x2-(pk2+2p)x+
p2k2
4
=0
由韋達定理得x1+x2=p+
2p
k2

|AB|=x1+x2+p=2p+
2p
k2
=2p(1+
1
k2

因為k=tana,所以1+
1
k2
=1+
1
tan2α
=
1
sin2α

所以|AB|=
2p
sin2α

當a=90°時,即AB垂直于X軸時,AB取得最小值,最小值是|AB|=2p
故選C
點評:本題主要考查拋物線的應用.這道題綜合了拋物線的性質(zhì)、拋物線的焦點弦、直線與拋物線的關(guān)系等問題.綜合性很強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設AB為過拋物線y2=8x的焦點的弦,則弦AB的長的最小值為(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設AB為過拋物線y2=8x的焦點的弦,若A,B兩點的坐標分別為(x1,y1),(x2,y2),m=
(x2-x1)2+(y2-y1)2
,則實數(shù)m的最小值為( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設AB為過拋物線y2=8x的焦點的弦,則弦AB的長的最小值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年吉林省長春市東北師大附中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

設AB為過拋物線y2=8x的焦點的弦,若A,B兩點的坐標分別為(x1,y1),(x2,y2),,則實數(shù)m的最小值為( )
A.2
B.4
C.8
D.16

查看答案和解析>>

同步練習冊答案