精英家教網 > 高中數學 > 題目詳情
已知橢圓,則以點為中點的弦所在直線方程為(      ).
A.B.
C.D.
C

試題分析:設弦的兩端點為A(x1,y1),B(x2,y2),
代入橢圓得,
兩式相減得,整理得
∴弦所在的直線的斜率為,其方程為y-2=(x+1),整理得.故選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,設橢圓,其中,過橢圓內一點的兩條直線分別與橢圓交于點,且滿足,其中為正常數. 當點恰為橢圓的右頂點時,對應的.
(1)求橢圓的離心率;
(2)求的值;
(3)當變化時,是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,設橢圓的左右焦點為,上頂點為,點關于對稱,且
(1)求橢圓的離心率;
(2)已知是過三點的圓上的點,若的面積為,求點到直線距離的最大值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在圓x2+y2=4上任取一點P,過點P作x軸的垂線段PD,D為垂足.當點P在圓上運動時,線段PD的中點M的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

分別為橢圓的左、右兩個焦點,若橢圓C上的點A(1,)到F1,F2兩點的距離之和等于4.
(1)寫出橢圓C的方程和焦點坐標;
(2)過點P(1,)的直線與橢圓交于兩點D、E,若DP=PE,求直線DE的方程;
(3)過點Q(1,0)的直線與橢圓交于兩點M、N,若△OMN面積取得最大,求直線MN的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過橢圓E:=1(a>b>0)的右焦點,且被圓C所截得的弦長為,點A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設Q為橢圓E上的一個動點,求·的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

長為3的線段AB的端點A、B分別在x軸、y軸上移動,=2,則點C的軌跡是(  )
A.線段      B.圓        C.橢圓      D.雙曲線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知線段的中點為,動點滿足為正常數).
(1)建立適當的直角坐標系,求動點所在的曲線方程;
(2)若,動點滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時橢圓的方程.

查看答案和解析>>

同步練習冊答案