5.設(shè)α1=2,α2=-3.2,則α1,α2分別是第二象限的角.

分析 分別判斷角的范圍即可得到結(jié)論.

解答 解:∵$\frac{π}{2}$<2<π,∴α1是第二象限角.
∵-$\frac{3π}{2}$<-3.2<-π,∴α2是第二象限角.
故答案為:二.

點(diǎn)評(píng) 本題主要考查角的象限的確定,根據(jù)條件判斷角的范圍是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知等比數(shù)列{an}的首項(xiàng)為$\frac{3}{2}$,公比為-$\frac{1}{2}$,其前n項(xiàng)和為Sn,若對(duì)任意的n∈N*,都有Sn-$\frac{1}{{S}_{n}}$∈[s,t],則t-s的最小值為$\frac{17}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[e,+∞]上的單調(diào)性;
(Ⅱ)當(dāng)a>2時(shí),求函數(shù)f(x)在區(qū)間[e,+∞]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2017x1+log2017x2+…+log2017x2016的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線C:y=ax2(a>0)的焦點(diǎn)為F,點(diǎn)P(4,$\frac{7}{2}$),且拋物線C恰好經(jīng)過(guò)線段PF的中點(diǎn).
(I)求a的值;
(Ⅱ)過(guò)點(diǎn)P的直線l交拋物線C于A,B兩點(diǎn),設(shè)直線FA,F(xiàn)P,F(xiàn)B的斜率分別為k1,k2,k3,則是否有等式k1+k3=$\frac{8}{9}$k2成立?若能成立,求出直線l的方程;若不能成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某公司的研發(fā)團(tuán)隊(duì),可以進(jìn)行A、B、C三種新產(chǎn)品的研發(fā),研發(fā)成功的概率分別為P(A)=$\frac{4}{5}$,P(B)=$\frac{2}{3}$,P(C)=$\frac{1}{2}$,三個(gè)產(chǎn)品的研發(fā)相互獨(dú)立.
(1)求該公司恰有兩個(gè)產(chǎn)品研發(fā)成功的概率;
(2)已知A、B、C三種產(chǎn)品研發(fā)成功后帶來(lái)的產(chǎn)品收益(單位:萬(wàn)元)分別為1000、2000、1100,為了收益最大化,公司從中選擇兩個(gè)產(chǎn)品研發(fā),請(qǐng)你從數(shù)學(xué)期望的角度來(lái)考慮應(yīng)該研發(fā)哪兩個(gè)產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.曲線$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}$(θ為參數(shù))上的點(diǎn)與定點(diǎn)A(-1,-1)距離的最小值是$\sqrt{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)$f(x)=sin(ωx-\frac{3π}{4})(ω>0)的最小正周期為π$
(Ⅰ)求ω;      
(Ⅱ)若$f(\frac{α}{2}+\frac{3π}{8})=\frac{24}{25}$,且$α∈(-\frac{π}{2},\frac{π}{2})$,求sin2α的值.
(Ⅲ)畫(huà)出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象(完成列表并作圖).

查看答案和解析>>

同步練習(xí)冊(cè)答案