18.已知函數(shù)f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[e,+∞]上的單調(diào)性;
(Ⅱ)當(dāng)a>2時(shí),求函數(shù)f(x)在區(qū)間[e,+∞]上的最小值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.

解答 解:(1)a=2時(shí),f(x)=x2-4x-2lnx,
f′(x)=2x-4-$\frac{2}{x}$=$\frac{2{[(x-1)}^{2}-2]}{x}$>0,
故f(x)在[e,+∞)遞增;
(2)f′(x)=2x-4+$\frac{2(1-a)}{x}$=$\frac{2{[(x-1)}^{2}-a]}{x}$,
令g(x)=(x-1)2-a,
2<a≤(e-1)2時(shí),g(x)≥0,即f′(x)≥0,
f(x)在[e,+∞)遞增,f(x)min=f(e)=e2-4e+2(1-a),
a>(e-1)2時(shí),令g(x)>0,解得:x>1+$\sqrt{a}$,或x<1-$\sqrt{a}$(舍),
令g(x)<0,解得:e<x<1+$\sqrt{a}$,
故f(x)在[e,1+$\sqrt{a}$)遞減,在(1+$\sqrt{a}$,+∞)遞增,
故f(x)min=f(1+$\sqrt{a}$).

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=[(a-1)x-a]lnx+x-1,a≥$\frac{1}{2}$.
(I)當(dāng)a=1時(shí),求f(x)的最小值;
(II)求證:f(x)在區(qū)間(0,1)單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an}的各項(xiàng)均為正數(shù),且an+1=an+$\frac{2}{{a}_{n}}$-1(n∈N*),{an}的前n項(xiàng)和是Sn
(Ⅰ)若{an}是遞增數(shù)列,求a1的取值范圍;
(Ⅱ)若a1>2,且對任意n∈N*,都有Sn≥na1-$\frac{1}{3}$(n-1),證明:Sn<2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={-2,-1,1,2},B={-3,-1,0,2},則A∩B的元素的個(gè)數(shù)為( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,}&{x<0}\\{-\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點(diǎn)A、B,使得曲線y=f(x)在這兩點(diǎn)處的切線重合,則點(diǎn)A的橫坐標(biāo)的取值范圍可能是( 。
A.(-$\frac{1}{2}$,0)B.(-1,-$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=-2+i(i為虛數(shù)單位),則復(fù)數(shù)$z+\frac{1}{z}$的虛部為( 。
A.$\frac{4}{5}$B.$\frac{4}{5}i$C.$\frac{6}{5}$D.$\frac{6}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知不等式ax2-3x+6>4的解集為 {x|x<1或x>b}(b>1).
(1)求實(shí)數(shù)a,b的值;
(2)解不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)α1=2,α2=-3.2,則α1,α2分別是第二象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用數(shù)學(xué)歸納法證明“1+2+22+…+2n-1=2n-1(n∈N+)”的過程中,第二步n=k時(shí)等式成立,則當(dāng)n=k+1時(shí),應(yīng)得到( 。
A.1+2+22+…+2k-2+2k-1=2k+1-1B.1+2+22+…+2k+2k+1=2k-1+2k+1
C.1+2+22+…+2k-1+2k+1=2k+1-1D.1+2+22+…+2k-1+2k=2k+1-1

查看答案和解析>>

同步練習(xí)冊答案