分析 (1)求出函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.
解答 解:(1)a=2時(shí),f(x)=x2-4x-2lnx,
f′(x)=2x-4-$\frac{2}{x}$=$\frac{2{[(x-1)}^{2}-2]}{x}$>0,
故f(x)在[e,+∞)遞增;
(2)f′(x)=2x-4+$\frac{2(1-a)}{x}$=$\frac{2{[(x-1)}^{2}-a]}{x}$,
令g(x)=(x-1)2-a,
2<a≤(e-1)2時(shí),g(x)≥0,即f′(x)≥0,
f(x)在[e,+∞)遞增,f(x)min=f(e)=e2-4e+2(1-a),
a>(e-1)2時(shí),令g(x)>0,解得:x>1+$\sqrt{a}$,或x<1-$\sqrt{a}$(舍),
令g(x)<0,解得:e<x<1+$\sqrt{a}$,
故f(x)在[e,1+$\sqrt{a}$)遞減,在(1+$\sqrt{a}$,+∞)遞增,
故f(x)min=f(1+$\sqrt{a}$).
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,0) | B. | (-1,-$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{4}{5}i$ | C. | $\frac{6}{5}$ | D. | $\frac{6}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+2+22+…+2k-2+2k-1=2k+1-1 | B. | 1+2+22+…+2k+2k+1=2k-1+2k+1 | ||
C. | 1+2+22+…+2k-1+2k+1=2k+1-1 | D. | 1+2+22+…+2k-1+2k=2k+1-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com