○●●○●○●○●西入口●○●●○●○●○●○●○●○南入口○○○●○○○○●○○○○○●北入口○○●○○○○○○○○○○●○(1)分別求該城市一天中早高峰時(shí)間段這四個(gè)主干道的入口發(fā)生擁堵的概率.(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通.聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個(gè)主干道入口在早高峰時(shí)間段每天各聘請一位交通協(xié)管員.聘請每位交通協(xié)管員的日費(fèi)用為(.且)元.方案二:在早高峰時(shí)間段若某主干道入口發(fā)生擁堵.交警部門則需臨時(shí)調(diào)派兩位交通協(xié)管員協(xié)助疏通交通.調(diào)派后當(dāng)日需給每位交通協(xié)管員的費(fèi)用為200元.以四個(gè)主干道入口聘請交通協(xié)管員的日總費(fèi)用的數(shù)學(xué)期望為依據(jù).你認(rèn)為在這兩個(gè)方案中應(yīng)該如何選擇?請說明理由.">
【題目】某城市有東、西、南、北四個(gè)進(jìn)入城區(qū)主干道的入口,在早高峰時(shí)間段,時(shí)常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個(gè)人口是否發(fā)生擁堵相互獨(dú)立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時(shí)間段這四個(gè)主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個(gè)主干道入口在早高峰時(shí)間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費(fèi)用為(,且)元.方案二:在早高峰時(shí)間段若某主干道入口發(fā)生擁堵,交警部門則需臨時(shí)調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費(fèi)用為200元.以四個(gè)主干道入口聘請交通協(xié)管員的日總費(fèi)用的數(shù)學(xué)期望為依據(jù),你認(rèn)為在這兩個(gè)方案中應(yīng)該如何選擇?請說明理由.
【答案】(1)
(2)當(dāng)時(shí),應(yīng)該選擇方案一;當(dāng)時(shí),應(yīng)該選擇方案二.
【解析】
(1)根據(jù)所給數(shù)據(jù)利用古典概型的概率公式計(jì)算可得.
(2)計(jì)算出方案二聘請交通協(xié)管員的日總費(fèi)的期望值,結(jié)合方案一比較分析.
解:(1)將東、西、南、北四個(gè)主干道入口發(fā)生擁堵的情況分別記為事件,,,,
則,.
(2)對于方案二,設(shè)四個(gè)主干道聘請交通協(xié)管員的日總費(fèi)用為,
則的可能取值為0,400,800,1200,1600.
,
,
,
,
,
故元.
對于方案一,四個(gè)主干道聘請交通協(xié)管員的日總費(fèi)用為元,
當(dāng)時(shí),,應(yīng)該選擇方案一;
當(dāng)時(shí),,應(yīng)該選擇方案二.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,滿足.
(1)將表示為的函數(shù),并求的最小正周期;
(2)已知、、分別為銳角的三個(gè)內(nèi)角、、對應(yīng)的邊長,的最大值是,且,求周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,左、右焦點(diǎn)分別是、,且橢圓上一動(dòng)點(diǎn)到的最遠(yuǎn)距離為,過的直線與橢圓交于,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)以為直角時(shí),求直線的方程;
(3)直線的斜率存在且不為0時(shí),試問軸上是否存在一點(diǎn)使得,若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個(gè)頂點(diǎn)均在拋物線上,給出下列命題:
①若直線過點(diǎn),則存在使拋物線的焦點(diǎn)恰為的重心;
②若直線過點(diǎn),則存在點(diǎn)使為直角三角形;
③存在,使拋物線的焦點(diǎn)恰為的外心;
④若邊的中線軸,,則的面積為.
其中正確的序號(hào)為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在上.
(1) 求橢圓的方程;
(2) 設(shè)分別是橢圓的上、下焦點(diǎn),過的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上三年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任交通死亡事故 | 上浮30% | |
某機(jī)構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的家庭收入情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機(jī)抽取了戶家庭進(jìn)行問卷調(diào)查,經(jīng)調(diào)查發(fā)現(xiàn),這些家庭的月收人在元到元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)作出:
(1)經(jīng)統(tǒng)計(jì)發(fā)現(xiàn),該社區(qū)居民的家庭月收人(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù).若落在區(qū)間的左側(cè),則可認(rèn)為該家庭屬“收入較低家庭" ,社區(qū)將聯(lián)系該家庭,咨詢收入過低的原因,并采取相應(yīng)措施為該家庭提供創(chuàng)收途徑.若該社區(qū)家庭月收入為元,試判斷家庭是否屬于“收人較低家庭”,并說明原因;
(2)將樣本的頻率視為總體的概率
①從該社區(qū)所有家庭中隨機(jī)抽取戶家庭,若這戶家庭月收人均低于元的概率不小于,求的最大值;
②在①的條件下,某生活超市贊助了該社區(qū)的這次調(diào)查活動(dòng),并為這次參與調(diào)在的家庭制定了贈(zèng)送購物卡的活動(dòng),贈(zèng)送方式為:家庭月收入低于的獲贈(zèng)兩次隨機(jī)購物卡,家庭月收入不低于的獲贈(zèng)一次隨機(jī)購物卡;每次贈(zèng)送的購物卡金額及對應(yīng)的概率分別為:
贈(zèng)送購物卡金額(單位:元) | |||
概率 |
則家庭預(yù)期獲得的購物卡金額為多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為:(為參數(shù)),,為直線上距離為的兩動(dòng)點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn)且不在直線上.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程.
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,動(dòng)點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時(shí)直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com