【題目】為了了解居民的家庭收入情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機(jī)抽取了戶家庭進(jìn)行問卷調(diào)查,經(jīng)調(diào)查發(fā)現(xiàn),這些家庭的月收人在元到元之間,根據(jù)統(tǒng)計數(shù)據(jù)作出:
(1)經(jīng)統(tǒng)計發(fā)現(xiàn),該社區(qū)居民的家庭月收人(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù).若落在區(qū)間的左側(cè),則可認(rèn)為該家庭屬“收入較低家庭" ,社區(qū)將聯(lián)系該家庭,咨詢收入過低的原因,并采取相應(yīng)措施為該家庭提供創(chuàng)收途徑.若該社區(qū)家庭月收入為元,試判斷家庭是否屬于“收人較低家庭”,并說明原因;
(2)將樣本的頻率視為總體的概率
①從該社區(qū)所有家庭中隨機(jī)抽取戶家庭,若這戶家庭月收人均低于元的概率不小于,求的最大值;
②在①的條件下,某生活超市贊助了該社區(qū)的這次調(diào)查活動,并為這次參與調(diào)在的家庭制定了贈送購物卡的活動,贈送方式為:家庭月收入低于的獲贈兩次隨機(jī)購物卡,家庭月收入不低于的獲贈一次隨機(jī)購物卡;每次贈送的購物卡金額及對應(yīng)的概率分別為:
贈送購物卡金額(單位:元) | |||
概率 |
則家庭預(yù)期獲得的購物卡金額為多少元?(結(jié)果保留整數(shù))
【答案】(1)不屬于,理由見解析 (2)①3 ②333元
【解析】
(1)先求出該社區(qū)居民的家庭月收入平均值,求出的值,再比較該社區(qū)家庭月收入和的大小關(guān)系得解;(2)①先求出抽取一戶家庭其月收入低于元的概率,解不等式得解;②設(shè)所獲得的購物卡金額為隨機(jī)變量,則的取值分別為
,再求對應(yīng)的概率和期望.
(1)該社區(qū)居民的家庭月收入平均值為:
(百元)
又知道,故
該社區(qū)家庭月收入為 元百元,
故家庭不屬于“收入較低家庭”.
(2)①將樣本的頻率視為總體的概率,由頻率分布直方圖可知,抽取一戶家庭其月收入低于元的概率為
隨機(jī)抽取戶家庭月收入均低于元的概率為,
由題意知,所以n的最大值為3.
②由①知百元元,故家庭月收入低于,可獲贈兩次隨機(jī)購物卡,設(shè)所獲得的購物卡金額為隨機(jī)變量,則的取值分別為
則家庭預(yù)期獲得的購物卡金額為元
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且.
(1)的通項公式為__________;
(2)在、、、、這項中,被除余的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市有東、西、南、北四個進(jìn)入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個人口是否發(fā)生擁堵相互獨(dú)立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費(fèi)用為(,且)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費(fèi)用為200元.以四個主干道入口聘請交通協(xié)管員的日總費(fèi)用的數(shù)學(xué)期望為依據(jù),你認(rèn)為在這兩個方案中應(yīng)該如何選擇?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)進(jìn)行自主招生測試,需要對邏輯思維和閱讀表達(dá)進(jìn)行能力測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如圖所示,下列敘述正確的是( )
A.甲同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
B.乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前
C.甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前
D.甲同學(xué)的總成績排名比丙同學(xué)的總成績排名更靠前
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點
(1)求點與拋物線的焦點的距離;
(2)設(shè)斜率為的直線與拋物線交于兩點,若的面積為,求直線的方程;
(3)是否存在定圓,使得過曲線上任意一點作圓的兩條切線,與曲線交于另外兩點時,總有直線也與圓相切?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路經(jīng)過三個景點、、,景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點,經(jīng)測量景點位于景點的北偏東方向處,位于景點的正北方向,還位于景點的北偏西方向上,已知.
(1)景區(qū)管委會準(zhǔn)備由景點向景點修建一條筆直的公路,不考慮其他因素,求出這條公路的長;(結(jié)果精確到)
(2)求景點與景點之間的距離.(結(jié)果精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前項和為,若,.
(1)證明:當(dāng)時,;
(2)求數(shù)列的通項公式;
(3)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中m是不等于零的常數(shù).
(1)時,直接寫出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當(dāng)時,恒成立,求n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com