【題目】已知函數(shù)().
(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù),對(duì)于曲線上的兩個(gè)不同的點(diǎn), ,記直線的斜率為,若,證明: .
【答案】(1)(2)見解析
【解析】試題分析:(1)先確定函數(shù)定義域,再求導(dǎo)函數(shù),進(jìn)而求定義區(qū)間上導(dǎo)函數(shù)的零點(diǎn)2,最后列表分析導(dǎo)函數(shù)符號(hào):當(dāng)時(shí),,確定單調(diào)增區(qū)間為.(2)極點(diǎn)偏移問題,關(guān)鍵構(gòu)造函數(shù):先轉(zhuǎn)化所證不等式為,因?yàn)?/span> ,所以轉(zhuǎn)化研究函數(shù) 單調(diào)性,易得在上單調(diào)遞增,即得結(jié)論.
試題解析:(Ⅰ)依題意, .
令,即,解得,
故函數(shù)的單調(diào)遞增區(qū)間為.
(Ⅱ)依題意, ,
.
由題設(shè)得 .
又 ,
所以
.不妨設(shè), ,則,則
.
令 ,則,所以在上單調(diào)遞增,所以,故.又因?yàn)?/span>,因此,即.
又由知在上單調(diào)遞減,
所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)討論直線與圓的公共點(diǎn)個(gè)數(shù);
(Ⅱ)過極點(diǎn)作直線的垂線,垂足為,求點(diǎn)的軌跡與圓相交所得弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線的焦點(diǎn), 若點(diǎn)在上,且.
(1)求的值;
(2)若直線經(jīng)過點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)環(huán)境保護(hù)部《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定》,空氣質(zhì)量指數(shù)()在201—300之間為重度污染;在301—500之間為嚴(yán)重污染.依據(jù)空氣質(zhì)量預(yù)報(bào),同時(shí)綜合考慮空氣污染程度和持續(xù)時(shí)間,將空氣重污染分4個(gè)預(yù)警級(jí)別,由輕到重依次為預(yù)警四級(jí)、預(yù)警三級(jí)、預(yù)警二級(jí)、預(yù)警一級(jí),分別用藍(lán)、黃、橙、紅顏色標(biāo)示,預(yù)警一級(jí)(紅色)為最高級(jí)別.(一)預(yù)警四級(jí)(藍(lán)色):預(yù)測(cè)未來1天出現(xiàn)重度污染;(二)預(yù)警三級(jí)(黃色):預(yù)測(cè)未來1天出現(xiàn)嚴(yán)重污染或持續(xù)3天出現(xiàn)重度污染;(三)預(yù)警二級(jí)(橙色);預(yù)測(cè)未來持續(xù)3天交替出現(xiàn)重度污染或嚴(yán)重污染;(四)預(yù)警一級(jí)(紅色);預(yù)測(cè)未來持續(xù)3天出現(xiàn)嚴(yán)重污染.
某城市空氣質(zhì)量監(jiān)測(cè)部門對(duì)近300天空氣中濃度進(jìn)行統(tǒng)計(jì),得出這300天濃度的頻率分布直方圖如圖,將濃度落入各組的頻率視為概率,并假設(shè)每天的濃度相互獨(dú)立.
(1)求當(dāng)?shù)乇O(jiān)測(cè)部門發(fā)布顏色預(yù)警的概率;
(2)據(jù)當(dāng)?shù)乇O(jiān)測(cè)站數(shù)據(jù)顯示未來4天將出現(xiàn)3天嚴(yán)重污染,求監(jiān)測(cè)部門發(fā)布紅色預(yù)警的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示
(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個(gè)單位,才能使得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點(diǎn),M是CE的中點(diǎn),N點(diǎn)在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國(guó)內(nèi)某知名連鎖店分店開張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效展開,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該分店經(jīng)理對(duì)開業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示開業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
經(jīng)過進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程;
(2)若該分店此次抽獎(jiǎng)活動(dòng)自開業(yè)始,持續(xù)10天,參加抽獎(jiǎng)的每位顧客抽到一等獎(jiǎng)(價(jià)值200元獎(jiǎng)品)的概率為,抽到二等獎(jiǎng)(價(jià)值100元獎(jiǎng)品)的概率為,抽到三等獎(jiǎng)(價(jià)值10元獎(jiǎng)品)的概率為,試估計(jì)該分店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)送出多少元獎(jiǎng)品?
參考公式:,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com