【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示
(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個單位,才能使得到的圖象對應(yīng)的函數(shù)為偶函數(shù)?
【答案】
(1)解:A=3
T=4π﹣ = ,即 = (4π﹣ )=5π
∴ω=
于是f(x)=3sin( x+φ),
又其圖象過( ,0),
得sin( +φ)=0,φ=﹣
∴f(x)=3sin( x﹣ )
(2)解:由f(x+m)=3sin[ (x+m)﹣ ]=3sin( x+ ﹣ )為偶函數(shù)(m>0)
知 ﹣ =kπ+ ,即m= kπ+ ,k∈Z
∵m>0,
∴m小= .
【解析】(1)由圖知A=3,由 T= ,可求ω,其圖象過( ,0),可求φ;(2)由f(x+m)=3sin[ (x+m)﹣ ]為偶函數(shù),可求得m= kπ+ ,k∈Z,從而可求m小 .
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①y=sinx+cosx在區(qū)間(﹣ , )內(nèi)單調(diào)遞增;
②存在實數(shù)α,使sinαcosα= ;
③y=sin( +2x)是奇函數(shù);
④x= 是函數(shù)y=cos(2x+ )的一條對稱軸方程.
其中正確說法的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的
部分圖像如圖所示.
(Ⅰ)求函數(shù)的解析式及圖像的對稱軸方程;
(Ⅱ)把函數(shù)圖像上點的橫坐標(biāo)擴大到原來的倍(縱坐標(biāo)不變),再向左平移
個單位,得到函數(shù)的圖象,求關(guān)于的方程
在時所有的實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù),對于曲線上的兩個不同的點, ,記直線的斜率為,若,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為: ,以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線和曲線C的普通方程;
(2)在直角坐標(biāo)系中,過點B(0,1)作直線的垂線,垂足為H,試以為參數(shù),求動點H軌跡的參數(shù)方程,并指出軌跡表示的曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的半焦距為c,且過點,原點O到經(jīng)過兩點(c,0),(0,b)的直線的距離為.
(1)求橢圓E的方程;
(2)A為橢圓E上異于頂點的一點,點P滿足,過點P的直線交橢圓E于B,C兩點,且,若直線OA,OB的斜率之積為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當(dāng)1≤x≤20時,m=20+ x |
當(dāng)21≤x≤30時,m=10+ |
(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com