對(duì)任意正整數(shù)x,y都有f(x+y)=f(x)•f(y),且f(1)=,則[f(1)+f(2)+f(3)+…+f(n)]=( )
A.
B.1
C.-
D.
【答案】分析:先由f (x+y)=f (x)•f (y)得f (2x)=f (x)2=f(x).以及 =,兩個(gè)結(jié)論相結(jié)合可得 =f(n)=n,把問(wèn)題轉(zhuǎn)化為求等比數(shù)列的和,再代入求和公式即可.
解答:解:由f(x+y)=f(x)•f(y)得 f(2x)=f(x)2=f(x).
∵f (x+y)=f (x)•f (y)⇒f (x+1)=f (x)•f (2)=2f(x)⇒=,
所以數(shù)列{f(n)}是以為首項(xiàng),為公比的等比數(shù)列,故f(n)=×n-1=(n
=f(n)=(n
則 f(1)+f(2)+f(3)+…+f(n)]=(1+(2+(3+…+n==1-(n
[f(1)+f(2)+f(3)+…+f(n)]=[1-(n]=1
故選B.
點(diǎn)評(píng):本題主要考查抽象函數(shù)及其應(yīng)用.抽象函數(shù)是相對(duì)于給出具體解析式的函數(shù)來(lái)說(shuō)的,它雖然沒(méi)有具體的表達(dá)式,但是有一定的對(duì)應(yīng)法則,滿足一定的性質(zhì),這種對(duì)應(yīng)法則及函數(shù)的相應(yīng)的性質(zhì)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意正整數(shù)x,y都有f(x+y)=f(x)•f(y),且f(1)=
1
2
,則
lim
n→∞
[f(1)+f(2)+f(3)+…+f(n)]=( 。
A、
1
4
B、1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意正整數(shù)x,y都有f(x+y)=f(x)•f(y),且f(1)=
1
2
,則f(1)+f(2)+…+f(2011)=( 。
A、1-
1
22011
B、1-
1
22010
C、1-
1
22009
D、
1
22011
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意正整數(shù)x、y都有f(x+y)=f(x)•f(y),且f(1)=
1
2
,則f(1)+f(2)+…+f(2008)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省南昌市高三第三次模擬考試文科數(shù)學(xué) 題型:選擇題

.對(duì)任意正整數(shù)x,y都有,且=                             (    )

       A.               B.                C.                D. [來(lái)源:]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案