已知函數(shù)
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性;
(3)當時,函數(shù),求函數(shù)的值域.

(1)函數(shù)的定義域為;(2)函數(shù)是奇函數(shù);(3)函數(shù)的值域為

解析試題分析:(1)具有解析式的函數(shù)的定義域無特殊情況下,通常就是使解析式有意義的自變量的取值范圍;通常關(guān)注的是:①開偶次方時被開方的式子為非負;②作為分母不得為零;③作為對數(shù)的真數(shù)必須為正;④作為對數(shù)的底數(shù)必須為正且不為;(2)奇、偶性的判斷,首先必須關(guān)注定義域,定義域關(guān)于原點對稱是函數(shù)具備奇、偶性的必要條件,接下來用定義或等價定義來判斷;(3)求函數(shù)值域的方法很多,在大題中經(jīng)常通過探討函數(shù)單調(diào)性來達到求函數(shù)值域的目的,這里即是.
試題解析:(1)由,則函數(shù)的定義域為.       4分
(2)當時,,
因此,函數(shù)是奇函數(shù).                                              9分
(3)設,當時,
則函數(shù)在區(qū)間上是減函數(shù),
故函數(shù)在區(qū)間上也是減函數(shù).                                12分
(證明單調(diào)性也可用定義)
                            13分
因此,函數(shù)的值域為.                                         14分
考點:函數(shù)的定義域、值域、單調(diào)性、奇偶性等的綜合應用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知定義在R上的函數(shù)f(x)對任意實數(shù)x、y恒有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,又f(1)=-.
(1)求證:f(x)為奇函數(shù);       (2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)當時,求曲線處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)當時,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)a的取值范圍為        .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在其定義域上為奇函數(shù).
⑴求m的值;
⑵若關(guān)于x的不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)本題有2個小題,第一小題滿分6分,第二小題滿分1分.
設常數(shù),函數(shù)
=4,求函數(shù)的反函數(shù)
根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),
當0≤x≤1時,f(x)=x.
(1)求f(3)的值;
(2)當-4≤x≤4時,求f(x)的圖像與x軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù)的反函數(shù)是          

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

是奇函數(shù),則           .w.w.w.k.s.5.u.c.o.m   

查看答案和解析>>

同步練習冊答案