已知函數(shù)在其定義域上為奇函數(shù).
⑴求m的值;
⑵若關(guān)于x的不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

(1)m=7;(2)

解析試題分析:
(1)由是奇函數(shù)得:所以;然后對(duì)m=-7和m=7檢驗(yàn)即可;
(2)先由(1)及復(fù)合函數(shù)的單調(diào)性確定函數(shù)的單調(diào)性,再利用函數(shù)的奇偶性和單調(diào)性將已知不等式轉(zhuǎn)化為一般的代數(shù)不等式,最后用分離參數(shù)法,將不等式的恒成立問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題進(jìn)行解決.
試題解析:(1)由是奇函數(shù)得:所以
當(dāng)m=-7時(shí),,舍去;
當(dāng)時(shí),,由得定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2c/8/1u4dd4.png" style="vertical-align:middle;" />.
⑵設(shè)是增函數(shù),是增函數(shù).又為奇函數(shù),
,對(duì)任意實(shí)數(shù)恒成立;
對(duì)于,即
恒成立,在[2,3]上遞增,,則;
對(duì)于,在[2,3]上遞增,,則;
對(duì)于,即,則;
綜上,的取值范圍是
考點(diǎn):1.函數(shù)的奇偶性;2.利用函數(shù)的單調(diào)性解不等式;3.不等式的恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性;
(3)當(dāng)時(shí),函數(shù),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的奇函數(shù),且,若時(shí),有
(1)證明上是增函數(shù);
(2)解不等式
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在上函數(shù)為奇函數(shù).
(1)求的值;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在上的奇函數(shù),當(dāng)時(shí),
(1)求函數(shù)上的解析式;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為偶函數(shù),曲線過(guò)點(diǎn)
(1)若曲線有斜率為0的切線,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí)函數(shù)取得極值,確定的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若函數(shù)的反函數(shù)的圖像過(guò)點(diǎn),則

查看答案和解析>>

同步練習(xí)冊(cè)答案