衛(wèi)健型進步型總計男20女20總計40(3)若從楊老師當天選取的步數(shù)大于10000的好友中按男女比例分層選取人進行身體狀況調(diào)查.然后再從這位好友中選取人進行訪談.求至少有一位女性好友的概率.附: .0.100.050.0250.0102.7063.8415.0246.635">
【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,楊老師的微信朋友圈內(nèi)有位好友參與了“微信運動”,他隨機選取了位微信好友(女人,男人),統(tǒng)計其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數(shù)情況可分為五個類別: 步)(說明:“”表示大于等于,小于等于.下同), 步), 步), 步), 步及以),且三種類別人數(shù)比例為,將統(tǒng)計結果繪制如圖所示的條形圖.
若某人一天的走路步數(shù)超過步被系統(tǒng)認定為“衛(wèi)健型",否則被系統(tǒng)認定為“進步型”.
(1)若以楊老師選取的好友當天行走步數(shù)的頻率分布來估計所有微信好友每日走路步數(shù)的概率分布,請估計楊老師的微信好友圈里參與“微信運動”的名好友中,每天走路步數(shù)在步的人數(shù);
(2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認定“認定類型”與“性別”有關?
p> | 衛(wèi)健型 | 進步型 | 總計 |
男 | 20 | ||
女 | 20 | ||
總計 | 40 |
(3)若從楊老師當天選取的步數(shù)大于10000的好友中按男女比例分層選取人進行身體狀況調(diào)查,然后再從這位好友中選取人進行訪談,求至少有一位女性好友的概率.
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)375;(2)見解析;(3)
【解析】分析:(1)根據(jù)樣本數(shù)據(jù)男性朋友類別設為人,結合三種類別人數(shù)比例為,即可求得,從而可得名好友中每天走路步數(shù)在步的人數(shù);(2)根據(jù)所給數(shù)據(jù)得出列聯(lián)表,計算觀測值,與臨界值比較即可得出結論;(3)根據(jù)分層抽樣原理,利用列舉法求出基本事件數(shù),即可計算所求的概率值.
詳解:(1)在樣本數(shù)據(jù)中,男性朋友類別設為人,則由題意可知,可知,故類別有人, 類別有人, 類別有人,走路步數(shù)在步的包括、兩類別共計人;女性朋友走路步數(shù)在步共有人.
用樣本數(shù)據(jù)估計所有微信好友每日走路步數(shù)的概率分布,則: 人.
(2)根據(jù)題意在抽取的個樣本數(shù)據(jù)的列聯(lián)表:
衛(wèi)健型 | 進步型 | 總計 | |
男 | 14 | 6 | 20 |
女 | 8 | 12 | 20 |
總計 | 22 | 18 | 40 |
得: ,
故沒有以上的把握認為認為“評定類型”與“性別”有關
(3)在步數(shù)大于的好友中分層選取位好友,男性有: 人,記為、、、,女性人記為;從這人中選取人,基本事件是, , , 、、、、、、共種,這人中至少有一位女性好友的事件是, , , 共種,故所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,右頂點為,且過點,圓是以線段為直徑的圓,經(jīng)過點且傾斜角為的直線與圓相切.
(1)求橢圓及圓的方程;
(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點,且滿足?若存在,請求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點(0,4),斜率為-1的直線與拋物線y2=2px(p>0)交于兩點A,B,如果OA⊥OB(O為原點),求拋物線的標準方程及焦點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若,是否存在,使得為偶函數(shù),如果存在,請舉例并證明,如果不存在,請說明理由;
(2)若,判斷在上的單調(diào)性,并用定義證明;
(3)已知,存在,對任意,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關的數(shù)據(jù)如下表所示:
文藝節(jié)目 | 新聞節(jié)目 | 總計 | |
20至40歲 | 42 | 16 | 58 |
大于40歲 | 18 | 24 | 42 |
總計 | 60 | 40 | 100 |
(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名觀眾,則大于40歲的觀眾應該抽取幾名?
(2)由表中數(shù)據(jù)分析,收看新聞節(jié)目的觀眾是否與年齡有關?
(3)在第(1)中抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.
(提示:,其中.當時,有的把握判定兩個變量有關聯(lián);當時,有的把握判定兩個變量有關聯(lián);當時,有的把握判定兩個變量有關聯(lián).)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列命題的真假:
(1)點P到圓心O的距離大于圓的半徑是點P在外的充要條件;
(2)兩個三角形的面積相等是這兩個三角形全等的充分不必要條件;
(3)是的必要不充分條件;
(4)x或y為有理數(shù)是xy為有理數(shù)的既不充分又不必要條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com